
CSE 143
Lecture 7

Sets and Maps

reading: 11.2 - 11.3; 13.2

slides created by Marty Stepp

http://www.cs.washington.edu/143/

2

Exercise

• Write a program that counts the number of unique words in a
large text file (say, Moby Dick or the King James Bible).

– Store the words in a collection and report the # of unique words.

– Once you've created this collection, allow the user to search it to
see whether various words appear in the text file.

• What collection is appropriate for this problem?

3

Empirical analysis (13.2)

Running a program and measuring its performance

System.currentTimeMillis()

– Returns an integer representing the number of milliseconds that
have passed since 12:00am, January 1, 1970.

• The result is returned as a value of type long , which is like int but

with a larger numeric range (64 bits vs. 32).

– Can be called twice to see how many milliseconds have elapsed
between two points in a program.

• How much time does it take to store Moby Dick into a List ?

4

Sets (11.2)

• set: A collection of unique values (no duplicates allowed)
that can perform the following operations efficiently:

– add, remove, search (contains)

– We don't think of a set as having indexes; we just
add things to the set in general and don't worry about order

set.contains("to") true

set

"the" "of"

"from"
"to"

"she"
"you"

"him""why"

"in"

"down"
"by"

"if"

set.contains("be") false

5

Set implementation

• in Java, sets are represented by Set interface in java.util

• Set is implemented by HashSet and TreeSet classes

– HashSet : implemented using a "hash table" array;
very fast: O(1) for all operations
elements are stored in unpredictable order

– TreeSet : implemented using a "binary search tree";
pretty fast: O(log N) for all operations
elements are stored in sorted order

6

Set methods

List<String> list = new ArrayList<String>();
...
Set<Integer> set = new HashSet<Integer>(); // empty
Set<String> set2 = new HashSet<String>(list);

– can construct an empty set, or one based on a given collection

removes all elements of the setclear()

returns true if the set's size is 0isEmpty()

returns true if the given value is found in this setcontains(value)

returns a string such as "[3, 42, -7, 15]"toString()

returns the number of elements in listsize()

removes the given value from the setremove(value)

adds the given value to the setadd(value)

7

Set operations

returns an array of the elements in this settoArray()

removes elements not found in given collection from this setretainAll(coll)

removes all elements in the given collection from this setremoveAll(coll)

returns an object used to examine set's contents (seen later)iterator()

returns true if given other set contains the same elementsequals(set)

returns true if this set contains every element from given setcontainsAll(coll)

adds all elements from the given collection to this setaddAll(collection)

addAll retainAll removeAll

8

Sets and ordering

• Set s do not use indexes; you cannot get element i

• HashSet : elements are stored in an unpredictable order

Set<String> names = new HashSet<String>();
names.add("Jake");
names.add("Robert");
names.add("Marisa");
names.add("Kasey");
System.out.println(names);
// [Kasey, Robert, Jake, Marisa]

• TreeSet : elements are stored in their "natural" sorted order

Set<String> names = new TreeSet<String>();
...
// [Jake, Kasey, Marisa, Robert]

9

The "for each" loop (7.1)

for (type name : collection) {
statements;

}

• Provides a clean syntax for looping over the elements of a Set ,
List , array, or other collection

Set<Double> grades = new HashSet<Double>();
...

for (double grade : set) {
System.out.println("Student's grade: " + grade);

}

10

Exercise

• Modify your program to count the number of occurrences of
each word in the book.

– Allow the user to type a word and report how many times that
word appeared in the book.

– Report all words that appeared in the book at least 500 times, in
alphabetical order.

• What collection is appropriate for this problem?

11

Maps

• map: An ADT holding a set of unique keys and a collection of
values, where each key is associated with one value.
– a.k.a. "dictionary", "associative array", "hash"

• basic map operations:

– put(key, value): Adds a
mapping from a key to
a value.

– get(key): Retrieves the
value mapped to the key.

– remove(key): Removes
the given key and its
mapped value. map.get("Juliet") returns "Capulet"

12

Maps and tallying

• a map can be thought of as generalization of an array

– the "index" (key) doesn't have to be an int

• recall previous tallying examples from CSE 142

– count digits: 22092310907

// (M)cCain, (O)bama, (I)ndependent
– count votes: "MOOOOOOMMMMMOOOOOOMOMMIMOMMIMOMMIO"

index 0 1 2 3 4 5 6 7 8 9

value 3 1 3 0 0 0 0 1 0 2

key "M" "O" "I"

value 16 14 3

"M"

"O"

"I" 16

3

14

keys values

13

Map implementation

• in Java, maps are represented by Map interface in java.util

• Map is implemented by HashMap and TreeMap classes

– HashMap: implemented using a "hash table" array;
very fast: O(1) ; keys are stored in unpredictable order

– TreeMap : implemented using a "binary search tree";
pretty fast: O(log N) ; keys are stored in sorted order

– a map requires 2 type parameters: one for keys, one for values

// maps from String keys to Integer values
Map<String, Integer> votes = new HashMap <String, Integer>();

14

Map methods

returns the value mapped to the given key (null if none)get(key)

removes all key/value pairs from the mapclear()

returns true if the map's size is 0isEmpty()

returns true if the map contains a mapping for the given keycontainsKey(key)

returns a string such as "{a=90, d=60, c=70}"toString()

returns the number of key/value pairs in the mapsize()

removes any existing mapping for the given keyremove(key)

adds a mapping from the given key to the given valueput(key, value)

returns true if given map has same mappings as this oneequals(map)

adds all key/value pairs from the given map to this mapputAll(map)

returns a Collection of all values in the mapvalues()

returns a Set of all keys in the mapkeySet()

15

Maps vs. sets

• A set is like a map from elements to boolean values.

– We are remembering one related piece of information about
every element: Is "Marty" found in the set? (true/false)

– A map allows the related piece of information to be something
other than a boolean: What is "Marty" 's phone number?

Set
"Marty" true

false

Map
"Marty" "206-685-2181"

16

keySet and values

• keySet method returns a set of all keys in the map

– can loop over the keys in a foreach loop

– can get each key's associated value by calling get on the map

Map<String, Integer> ages = new HashMap<String, Int eger>();
ages.put("Marty", 19);
ages.put("Geneva", 2);
ages.put("Vicki", 57);
for (String name : ages.keySet()) { // Geneva -> 2

int age = ages.get(age); // Marty -> 19
System.out.println(name + " -> " + age); // Vicki -> 57

}

• values method returns a collection of all values in the map

– can loop over the values in a foreach loop

– no easy way to get from a value to its associated key(s)

