
CSE 143
Lecture 6

Interfaces; Complexity (Big-Oh)

reading: 9.5, 11.1, 13.1 - 13.3

slides created by Marty Stepp

http://www.cs.washington.edu/143/

2

Related classes

• Consider the task of writing classes to represent 2D shapes
such as Circle , Rectangle , and Triangle .

• Certain operations are common to all shapes:
– perimeter: distance around the outside of the shape

– area: amount of 2D space occupied by the shape

– Every shape has these, but each computes them differently.

3

Shape area and perimeter

• Circle (as defined by radius r):
area = π r 2

perimeter = 2 π r

• Rectangle (as defined by width w and height h):
area = w h

perimeter = 2w + 2h

• Triangle (as defined by side lengths a, b, and c)
area = √(s (s - a) (s - b) (s - c))

where s = ½ (a + b + c)

perimeter = a + b + c

r

w

h

a
b

c

4

Common behavior

• Suppose we have 3 classes Circle , Rectangle , Triangle .
– Each has the methods perimeter and area .

• We'd like our client code to be able to treat different kinds of
shapes in the same way:
– Write a method that prints any shape's area and perimeter.

– Create an array to hold a mixture of the various shape objects.

– Write a method that could return a rectangle, a circle, a triangle,
or any other kind of shape.

– Make a DrawingPanel display many shapes on screen.

5

Interfaces (9.5)

• interface: A list of methods that classes can promise to implement.

– Inheritance gives you an is-a relationship and code sharing.
• A Lawyer object can be treated as an Employee , and

Lawyer inherits Employee 's code.

– Interfaces give you an is-a relationship without code sharing.
• A Rectangle object can be treated as a Shape but inherits no code.

– Analogous to non-programming idea of roles or certifications:
• "I'm certified as a CPA accountant. The certification assures you that

I know how to do taxes, perform audits, and do consulting."

• "I'm a Shape. I know how to compute my area and perimeter."

6

Interface syntax

public interface name {
public type name(type name, ..., type name);
public type name(type name, ..., type name);
...
public type name(type name, ..., type name);

}

Example:
public interface Vehicle {

public int getSpeed();
public void setDirection(int direction);

}

7

Shape interface

// Describes features common to all shapes.
public interface Shape {

public double area();
public double perimeter();

}

– Saved as Shape.java

• abstract method: A header without an implementation.
– The actual bodies are not specified, because we want to allow

each class to implement the behavior in its own way.

8

Implementing an interface

public class name implements interface {
...

}

• A class can declare that it "implements" an interface.
– The class promises to contain each method in that interface.

(Otherwise it will fail to compile.)

– Example:
public class Bicycle implements Vehicle {

...
}

9

Interface requirements

public class Banana implements Shape {
// haha, no methods! pwned

}

• If we write a class that claims to be a Shape but doesn't
implement area and perimeter methods, it will not compile.

Banana.java:1: Banana is not abstract and does
not override abstract method area() in Shape
public class Banana implements Shape {

^

10

Interfaces + polymorphism

• Interfaces benefit the client code author.
– They allow client code to take advantage of polymorphism

(the same code is able to work with different types of objects).

public static void printInfo(Shape s) {
System.out.println("The shape: " + s);
System.out.println("area : " + s.area());
System.out.println("perim: " + s.perimeter());
System.out.println();

}

– Any shape can be passed as the parameter to the method.

Circle circ = new Circle(12.0);
Triangle tri = new Triangle(5, 12, 13);
printInfo(circ);
printInfo(tri);

11

ADTs as interfaces (11.1)

• abstract data type (ADT): A specification of a collection of
data and the operations that can be performed on it.
– Describes what a collection does, not how it does it.

• Java's collection framework describes ADTs with interfaces:
– Collection , Deque, List , Map, Queue, Set , SortedMap

• An ADT can be implemented in multiple ways by classes:
– ArrayList and LinkedList implement List

– HashSet and TreeSet implement Set

– LinkedList , ArrayDeque , etc. implement Queue

• They messed up on Stack ; there's no Stack interface, just a class.

12

Using ADT interfaces

• It is considered good practice to always declare collection
variables using the corresponding ADT interface type:

List<String> list = new ArrayList<String>();

• Methods that accept a collection as a parameter should also
declare the parameter using the ADT interface type:

public void stutter(List<String> list) {

...

}

13

Why use ADTs?

• Why would we want more than one kind of list, queue, etc.?

• Answer: Each implementation is more efficient at certain tasks.
– ArrayList is faster for adding/removing at the end;

LinkedList is faster for adding/removing at the front/middle.

– HashSet can search a huge data set for a value in short time;
TreeSet is slower but keeps the set of data in a sorted order.

– You choose the optimal implementation for your task, and if the
rest of your code is written to use the ADT interfaces, it will work.

14

Algorithm growth rates (13.2)

• We measure runtime efficiency not in seconds,
but in proportion to the input data size N.
– growth rate: Change in runtime as N changes.

• Say an algorithm runs 0.4N3 + 25N2 + 2N + 17 statements.
– Consider the runtime when N is extremely large.

– We ignore constants like 25 because they are tiny next to N.

– We only look at the highest-order term (N3) because it dominates.

– We say that this algorithm runs "on the order of" N3.

– or O(N3) for short ("Big-Oh of N cubed")

15

Complexity classes

• complexity class: A category of algorithm efficiency based on
the algorithm's relationship to the input size N.

............

5 * 1061 yearsmultiplies drasticallyO(2N)exponential

55 minmultiplies by 8O(N3)cubic

quadruples

slightly more than doubles

doubles

increases slightly

unchanged

If you double N, ...

1 min 42 sec

6 sec

3.2 sec

175ms

10ms

Example

O(N2)

O(N log2 N)

O(N)

O(log2 N)

O(1)

Big-OhClass

quadratic

log-linear

linear

logarithmic

constant

16

Collection efficiency

SortedIntList StackArrayList QueueMethod

size

set

remove

get

indexOf

add(index, value)

add (or push)

• Efficiency of various operations on different collections:

O(1)

O(1)

O(N)

O(1)

O(?)

O(N)

SortedIntList

O(1)

-

O(1)

-

-

-

O(1)

Stack

O(1)

O(1)

O(N)

O(1)

O(N)

O(N)

O(1)

ArrayList QueueMethod

O(1)size

-set

O(1)remove

-get

-indexOf

-add(index, value)

O(1)add (or push)

17

Binary search (13.1, 13.3)

• binary search: An algorithm that searches a sorted array or
list by successively eliminating half of the elements.

– Examine the middle element of the array.
• If it is too big, eliminate the right half of the array and repeat.
• If it is too small, eliminate the left half of the array and repeat.
• Else it is the value we're searching for, so stop.

– Which indexes does the algorithm examine to find value 22?

– What is the runtime complexity class of binary search?

37

13

14

9

22

10

29

11

31

12index 0 1 2 3 4 5 6 7 8 14

value -4 -1 0 2 3 5 6 8 11 56

