
CSE 143
Lecture 4

ArrayList

Reading: 10.1

slides created by Marty Stepp

http://www.cs.washington.edu/143/

2

Handling errors

• Currently our ArrayIntList class allows the user to do some
bad things, like adding/getting elements beyond the end of the
list (but within the capacity).

// Precondition: 0 <= index < size
public void get(int index) {

return elementData[index];
}

• If we wanted to prevent such behavior, how could we do it?

3

Throwing exceptions (4.5)

throw new ExceptionType();

throw new ExceptionType("message");

• Causes the program to immediately crash with an exception.

– Why might this be a good thing?

• Common types of exceptions:
– ArithmeticException, ArrayIndexOutOfBoundsException, FileNotFoundException,
IllegalArgumentException, IllegalStateException, IOException, NoSuchElementException,
NullPointerException, RuntimeException, UnsupportedOperationException

public void get(int index) {
if (index >= size) {

throw new ArrayIndexOutOfBoundsException();
}
return elementData[index];

}

4

Exercise

• Write a program that reads a file and displays the words of that
file as a list.

– First display all words.

– Then display them with all plural words (end in "s") capitalized.

– Then display them in reverse order.

– Then display them with all plural words removed.

• These kinds of tasks are similar to those we performed with
the ArrayIntList, but we are using Strings, not ints.

– Should we write an ArrayStringList class?

5

Java Collection Framework

• Java includes a large set of powerful collection classes.

• We will learn to use several of these classes in CSE 143.

• The most basic, ArrayList, is essentially the same as our
ArrayIntList but can store any type of value.

• All collections are in the java.util package.
import java.util.*;

6

Java collection framework

7

Type Parameters (Generics)

ArrayList<Type> name = new ArrayList<Type>();

• When constructing an ArrayList, you must specify the type
of elements it will contain between < and >.

– We say that the ArrayList class accepts a type parameter,
or that it is a generic class.

ArrayList<String> names = new ArrayList<String>();
names.add("Marty Stepp");
names.add("Stuart Reges");

8

ArrayList methods (10.1)

returns a string representation of the list
such as "[3, 42, -7, 15]"

toString()

returns the number of elements in listsize()

replaces value at given index with given valueset(index, value)

removes/returns value at given index, shifting
subsequent values left

remove(index)

returns the value at given indexget(index)

returns first index where given value is found
in list (-1 if not found)

indexOf(value)

removes all elements of the listclear()

inserts given value at given index, shifting
subsequent values right

add(index, value)

appends value at end of listadd(value)

9

ArrayList methods 2

returns an array of the elements in this listtoArray()

returns the sub-portion of the list between indexes from
(exclusive) and to (inclusive)

subList(from, to)

removes any elements not found in given list from this listretainAll(list)

removes any elements found in the given list from this listremoveAll(list)

finds and removes the given value from this listremove(value)

returns last index value is found in list (-1 if not found)lastIndexOf(value)

returns an object used to examine the contents of the list
(seen later)

iterator()
listIterator()

returns true if given other list contains the same elementsequals(list)

returns true if this list contains every element from given listcontainsAll(list)

returns true if given value is found somewhere in this listcontains(value)

adds all elements from the given list to this list
(at the end of the list, or inserts them at the given index)

addAll(list)
addAll(index, list)

10

Learning about classes

• The Java API Specification is a huge web page containing
documentation about every Java class and its methods.

– The link to the API Specs is on the course web site.

11

Exercises

• Write a method tokenize that accepts a file Scanner and
reads the words of the file into an ArrayList and returns it.

• Write a method capitalizePlurals that accepts an
ArrayList of strings and replaces every word ending with an
"s" with its uppercased version.

• Write a method reverse that reverses the order of the
elements in an ArrayList of strings.

• Write a method removePlurals that accepts an ArrayList
of strings and removes every word in the list ending with an
"s", case-insensitively.

12

Modifying while looping

• Consider the following flawed pseudocode algorithm to remove
plural elements from a list:

removePlurals(list) {
for (int i = 0; i < list.size(); i++) {

if element i is plural, remove it.
}

}

– What does the algorithm do wrong?

6size

"seashore"

5

"the"

4

"seashells"

2

"by"

3

"sells""she"value

10index

13

ArrayList of primitives?

• The type you specify when creating an ArrayList must be an
object type; it cannot be a primitive type.

– The following is illegal:

// illegal -- int cannot be a type parameter
ArrayList<int> list = new ArrayList<int>();

• But we can still use ArrayList with primitive types by using
special classes called wrapper classes in their place.

ArrayList<Integer> list = new ArrayList<Integer>();

14

Wrapper classes

• A wrapper is an object whose sole purpose is to hold a primitive value.

• Once you construct the list, use it with primitives as normal:

ArrayList<Double> grades = new ArrayList<Double>();
grades.add(3.2);
grades.add(2.7);
...

Booleanboolean

Characterchar

Doubledouble

Integerint

Wrapper TypePrimitive Type

15

Exercise

• Last week we wrote a program that used our ArrayIntList
to read a file of numbers and print them in reverse order.
Refactor that program to use ArrayList.

• Then modify the program to print a "stretched" version of the
list of numbers, where every number is replaced with two
elements, each of which is half as large as the original.

– Write a stretch method to help with this.

