CSE 143, Winter 2009

Programming Assignment #8: Huffman Coding (20 points)
Due Thursday, March 12, 2009, 11:30 PM

No submissionsfor this assignment will be accepted after Sunday, March 15, 2009, at 11:30pm.

This program focuses on binary trees, priority @sewand input/output. Turn in files hamddffmanTree.java
HuffmanNode.java , andsecretmessage.huf from the Homework section of the web site. Youl wiéed support
files HuffMain.java , Bit*.java , and input files from the web page; place thernihersame folder as your classes.

Huffman Coding:

Huffman coding is an algorithm devised by DavidHuffman of MIT in 1952 for compressing text datantake a file
occupy a smaller number of bytes. This relativaigple compression algorithm is powerful enough ttaiations of it
are still used today in computer networks, fax nraety modems, HDTV, and other areas.

Normally text data is stored in a standard fornfa® bits per character, commonly using an encodalted ASCII that
maps every character to a binary integer value De?85. The idea of Huffman coding is to abandenrtgid 8-bits-per-
character requirement and use different-lengthrpieacodings for different characters. The advgataf doing this is
that if a character occurs frequently in the flach as the letteg' , it could be given a shorter encoding (fewer bits)
making the file smaller. The tradeoff is that soth@racters may need to use encodings that areridingn 8 bits, but
this is reserved for characters that occur infratjyeso the extra cost is worth it.

The table below compares ASCII values of variowatters to possible Huffman encodings for the aéghakespeare's
Hamlet. Frequent characters such as spaceeandave short encodings, while rarer ones like have longer ones.

Character | ASCIl value | ASCII (binary) | Huffman (binary)
B 32 00100000 10
a’ 97 01100001 0001
[98 01100010 0111010
'c’ 99 01100011 001100
‘e’ 101 01100101 1100
'Z' 122 01111010 00100011010

The steps involved in Huffman coding a given terse file into a destination compressed file agefollowing:

Examine the source file's contents and count tinebew of occurrences of each character.

Place each character and its frequency (count@froences) into a sorted "priority" queue.

Convert the contents of this priority queue intairgary tree with a particular structure.

Traverse the tree to discover the binary encodifigsich character.

Re-examine the source file's contents, and for eaahacter, output the encoded binary versionatf¢haracter
to the destination file.

arwdE

Encoding a File:
For example, suppose we have a file namedhple.txt with the following contents:

|ab ab cab

In the original file, this text occupies 10 byt86 (pits) of data. The 10th is a special "end-&-f{[EOF) byte.
byte 1 2 3 4 5 6 7 8 9 10
char ‘a’ b’ B a’ 'b' " 'c’ ‘a’ 'b' EOF
ASCII 97 98 32 97 98 B2 99 91 98 256
binary | 01100001 1100010 00100000 01100001 0110D010 001000 00 [01100011 (1100001 01100010 N/A

In Step 1 of the Huffman's algorithm, a count ofreaharacter is computed. (In this assignment,ppavided client
program does this part for you, so you don't neeatbtit yourself.) The counts are representedraaa

{'=2,'a'=3, 'b'=3, 'c'=1, EOF=1}

1of5

Step 2 of the algorithm places these counts imtaritree nodes, each storing a character andra obits occurrences.
The nodes are put into a priority queue, which keiem in sorted order with smaller counts at thatfof the queue.
(The priority queue is somewhat arbitrary in howriéaks ties, such as being before EOF and® being beforea’).

1 1 2 3 3

front = EOF — b o back

Now the algorithm repeatedly removes the two ndd®s the front of the queue (the two with the smstlifrequencies)
and joins them into a new node whose frequendyes sum. The two nodes are placed as childreheohew node; the
first removed becomes the left child, and the sd¢ba right. The new node is re-inserted intogheue in sorted order:

2 2 3 3

front ~— 5 ——! baclk
/\)

1
‘¢ EOF

This process is repeated until the queue contailysame binary tree node with all the others ashigdren. This will be
the root of our finished Huffman tree. The follogidiagram shows this process:

3 3 4 4 6 10
b /\ /\ /\ o
4 6
2 2 2 2 3 3
/\ ' /\ b a ,/\ ,/\
2 2 3 3
1 1 1 1 — /\ T
‘c' EOF ‘c' EOF
1 1
‘c EOF

Notice that the nodes with low frequencies endarpdbwn in the tree, and nodes with high frequeneied up near the
root of the tree. This structure can be usedéateran efficient encoding. The Huffman code rsvdd from this tree by
thinking of each left branch as a bit value of @ aach right branch as a bit value of 1:

10
0 1

4 6
0 /\1 0 1
2 2 3 3

0 /\1 b a

1 1

c EOF

The code for each character can be determinedabigrsing the tree. To reach we go left twice from the root, so the
code for' is00. The code forc' is010, the code foEOFis 011, the code folb' is10 and the code foa' is11.

By traversing the tree, we can produce a map frioanacters to their binary representations. Farttiee, it would be:

20of5

{'=00, 'a'=11, 'b'=10, 'c'=010, EOF=011}
Using this map, we can encode the file into a endoinary representation. The taktab cab would be encoded as:
char |['a® [b | a 'y B 'c 'b" | EOF
binary 11 (10 |00 11 10 00 010} 11 |10 011
The overall encoded contents of the file 21€0001110000101110011 , which is 22 bits, or almost 3 bytes, compared
to the original file which was 10 bytes. (Many lfton-encoded text files compress to about half thréginal size.)
byte 1 2 3
char ab a b c a b EOF
binary [11100011 [10 110101 |1 10011 00
Since the character encodings have different lengttien the length of a Huffman-encoded file doescome out to an

exact multiple of 8 bits. Files are stored as seqgas of whole bytes, so in cases like this thaimimgy digits of the last
bit are filled with 0s. You do not need to wortyoait this in the assignment; it is part of the uhgieg file system.

It might worry you that the characters are stordéthaut any delimiters between them, since theirodittgs can be
different lengths and characters can cross bytadsries, as witta' at the end of the second byte above. But this wil
not cause problems in decoding the compressedb@eause Huffman encodings haveprafix property where no
character's encoding can ever occur as the startather's encoding. This is important when yatode the file later.

Decoding a File:

You can use a Huffman tree to decode text thatemagpressed with its encodings. The decoding dlguris to read
each bit from the file, one at a time, and use litito traverse the Huffman tree. If the bit if,ayou move left in the
tree. If the bit is 1, you move right. You doghintil you hit a leaf node. Leaf nodes represharacters, so once you
reach a leaf, you output that character. For exanspppose we are asked to decode a file conggihanfollowing bits:

1101101000110111011 |
Using the Huffman tree, we walk from the root umté find characters, then we output them and g& tathe root.

‘c' EOF

» First we read a (right), then & (left). We reactb’ and outpub. Back to the root101101000110111011

* Weread d (right), then a (right). We reacta’ and output. 101101000110111011
Weread @ (left), then al (right), then & (left). We reactc’ and output. 1011010 00110111011
Weread @ (left), then a (left). We reach' and output a space. 101101000 110111011
* Weread 4 (right), then a (right). We reacta’ and output. 10110100011 0111011
Weread @ (left), then al (right), then & (left). We reacthc’ and output. 1011010001101 11011
 Weread 4 (right), then a (right). We reacta’ and output. 101101000110111 011

So the overall decoded texthiac aca . (The input source reports when we reach an B@Facter of 011, so we stop.)

30f5

Implementation Details:

In this assignment you will create a classfmanTree to represent the overall tree of character freqesndrawn on
the previous page. You will also create a clasmanNode where each node stores information about one ctegira
The contents of theuffmanNode class are up to you, but it should not perforrargd share of the overall algorithm.

Your HuffmanTree class must have the following public constructaal anethods:

publ i ¢ Huf f manTr ee(Map<Character, |nteger> counts)
In this constructor you are passed a map from chensthar) to the number of occurrences of that charadgter X
You should use this map to build your Huffman tueeng a priority queuePtiorityQueue) as previously described.

public Map<Character, String> createEncodi ngs()

In this method you should traverse your Huffmare temd produce a mapping from each character irtrégeto its
encoded binary representation &ring . For the example shown on the previous pagesnépeis the following:

{'=010, 'a'=11, 'b'=00, 'd'=011, 'n'=10}

public void conpress(lnputStreaminput, BitQutputStream output) throws | OException
In this method you should read the text data froendiven input file stream and use your Huffmanoelimgs to write &
Huffman-compressed version of this data to therghié€ output file stream. You will useBitOutputStream object to
help you write the binary output one bit at a time described below.

public void deconpress(BitlnputStreaminput, CQutputStream output) throws | OExcepti on
In this method you should read the compressed Yontata from the given bit input file stream and wear Huffman tree
to write a decompressed text version of this dathe given output file stream. You may assumedhaharacters in th
input file were represented in the map of countssed to your tree's constructor. You will usBittnputStream
object to help you read the binary input one b &itme, as described below.

D

You may have additionagrivate methods. If a parameter passed to any methodealkoull , you should throw an
lllegalArgumentException . Methods that traverse your tree should be implged recursively whenever practical.

Your classes will interact with a providétiffMain client program that prompts the user for a fileneato compress.
When compressing a file, thffMain program also saves a separate file wittbant extension that stores the counts
of every character in the original file. This sthat theHuffmanTree can be reconstructed later when decompressing.

To compress/decompress files, you will want to read write binary data one bit at a time. Javali-m input/output
streams read an entire byte at a time, which maldifficult to examine each bit. Therefore we g@m®viding you with
BitOutputStream and BitlnputStream classes withwriteBit andreadBit methods to make it easier. Every

constructor and method of these clasbesvs IOException if something fails during the input/output process
Method Description

public void wri t eBi t (int bit) writes a single 0 or 1 bit to the output

public void wri t eBi t s(String bits) treats each character of the given string as §it or '1')

and writes each of those bits to the output

public void cl ose() stops writing (important to call this to ensuréadis saved)
Method Description

public int readBit () reads a single O or 1 bit from input; returns -grad of file

public boolean hasNext Bi t () returnstrue if more bits remain to be read, efase

public void cl ose() stops reading

Development Strategy and Hints:

We suggest that you first focus on building yourffrhan tree properly from the given map of characiunts. Then

work on creating the map ohar - String encodings from your tree. Then work on using yerodings to compress
files, and lastly work on trying to decompressla tihat you have previously compressed.

4 of 5

For your nodes to be able to be stored in a pyioiiteue, the queue needs to know how to sort thigmerefore your node
class must implement theomparable interface as discussed in lecture and sectiondeblshould be compared by
character frequency, where a character that odewsr times is "less than" one that occurs moreroftlf two nodes
have the same number of occurrences, they aredssasdi "equal” in this context.

Consider writing a toString method in yaduffmanNode class so you can easily print nodes or a priayityue of them.

You can examine your binary tree in JGRASP's debugdet a breakpoint and drdg Before After
your tree from the left to the right side of thegmram. The debugger initially will
not know how to display your node data. To fixsiHirom the "Viewer" window,

2

il

1
m
]

click the "wrench" icor”.. In the "Presentation View Configuration" boxpéyan
expression into the "Value Expressions" box. His program you'll want to see
multiple fields of each node, which is done witk fbllowing pattern:

node. field1# node . field2 =

It can be difficult to tell whether you have comgsed/decompressed a file correctly. If you opelufiman-compressed

binary file in a text editor, the appearance wdldibberish (because the text editor will try tterpret the bytes as ASCII
encodings, which is not the way the data is stor&thile developing your program, it can be helgtulvrite out each 0

or 1 as an entire character (byte) rather thankis arhis defeats the purpose of compressionatmee the "compressed”
file is actually larger than the original, but @rchelp you see whether the Os and 1s are whatxmect.

1
w
]

Our BitOutputStream andBitInputStream extend Java'®utputStream andInputStream classes respectively.
To write out your Os and 1s as entire bytes instdaabs bits, you can simply call the bit outpueam'swrite method
(which writes a byte, as with any other outputastng rather than itariteBit ~ method. There is alsovaiteBytes
method that takes @tring , to replace thavriteBits method. Alternatively, you can switch your biput/output
stream from "bit mode" into "byte mode" so thatrguwead /writeBit call actually reads/writes an entire byte. Do so
by calling thesetBitMode method on the stream with a parametefaige . For example:

|bitOut.setBitMode(faIse); I/ writes data as bytes , rather than bits (for debugging) |

The providedHuffMain client program can compress any text file. Wegssgyou start with a very small input file such
as the example shown in this document, and work yaiy up to larger files once that works.

Creative Aspect (secr et nessage. huf):

Along with your program you should turn in a filamedsecretmessage.huf that has been compressed using your
Huffman tree. This file contains a "secret" conggexl message from you to your TA. The messagbeanything you
want, as long as it is not offensive. Your TA vd#écompress your message with your tree and reddlé grading.

Style Guidelines and Grading:

Part of your grade will come from appropriatelyliming binary trees and recursion to implement ybwiffman tree as
described previously. We will also grade on thregahce of your recursive algorithms; don't crepezisl cases in your
recursive code if they are not necessary or repesds already handled. Redundancy is another majding focus;
some methods are similar in behavior or basedfodfioh other's behavior. You should avoid repekigid as much as
possible. Your class may have other methods besidse specified, but any other methods you addldibeprivate

You should follow good general style guidelines bsuss: making fieldgprivate and avoiding unnecessary fields;
declaring collection variables using interface gjpappropriately using control structures like Isagndif /else ;
properly using indentation, good variable namestgpds; and not having any lines of code longen th20 characters.

Comment your code descriptively in your own wortshe top of your class, each method, and on comgsetions of
your code. Comments should explain each methahs\bor, parameters, return, pre/post-conditions, exceptions.
For reference, outufiManTree class is around 120 lines long including comments blank lines.

50f5

