CSE 143, Winter 2009

Programming Assignment #6: Anagrams (20 points)
Due Thursday, February 26, 2009, 11:30 PM

This program focuses on recursive backtrackingrn T a file nameddnagr ans. j ava from the Homework section of
the course web site. You will need support fikesagr anMai n. j ava and various dictionary text files from the
Homework section of the course web site; place timethe same folder as your class.

Anagrams:

An anagram is a word or phrase made by rearranging the tettéranother word or phrase. For example, the svord
"midterm" and "trimmed" are anagrams. If you igmepaces and capitalization and allow multiple wpedmulti-word
phrase can be an anagram of some other word os@hr&or example, the phrases "Clint Eastwood" "adl west
action" are anagrams.

In this assignment, you will create a class callealgr ans that uses a dictionary to find all anagram phréisasmatch a
given word or phrase. You are provided with ardligrogramAnagr amvai n that prompts the user for phrases and then
passes those phrases to yAnagr ans object. It asks your object to print all anagrdimsthose phrases. Below is a
sample log of execution, wrapped into two colummse(input is underlined):

Wl come to the CSE 143 anagram sol ver. ng' shrugurgo
Using dictionary file dictI.txt. bog, surge, %e
Phrase to scranble (Enter to quit)? barbara bush ngﬂ§ ﬁég erg
Al words found in "barbara bush” bug, erg, hosé
[abash, aura, bar, barb, brush, bus, hub, rub, shrub, sub] bug, goés, her
Max words to include (Enter for no nmax)? 838; hggé,ggsa
bugs, ego, her
abash, bar, rub bugs 0, here
abash, rub, bar bugs, her, ego
bar, abash, rub bugs, here, go
bar. rub, abash bus, erg, go, he
rub, abash, bar bus. ' '

rub, bar, abash bus, go, er

Phrase to scranble (Enter to quit)? john kerry

Al'l words found in Kjohn kerrg) Bﬂé; hg: SB?'egg
[he, her] bus, He, gorgg
Max words to include (Enter for no nax)? 388; rﬂ%?'hége

Phrase to scranble (Enter to quit)? hairbrush 388’ sﬁé’ SPS%
Al'l words found in "hairbrush” — . erg, bogus, he
[bar, briar, brush, bus, hub, huh, hush, rub, shrub, sir, sub] erg. bug, hose
Max words to include (Enter for no max)? 2 SF%; Bﬂé; 8; ”8
erg, go, bus, he
briar, hush erg, go, he, bus
hush, briar erg, go, he, sub

erg. go, sub, he

Phrase to scranble (Enter to quit)? george bush SF%’ ﬁoesbogﬂg

Al words found in "george bush” erg. he. bus, go

[bee beg, bog, bogus, bough brush bug bugs, bus, eg% erg. he. go bus
rg, go, goes, gorge ﬁos grub he er, here og, erg, he, sub

hose hub; hug, shrub, rug, sub, surge] erg, he, b 0o

Max words to include (Enter for no max)? 0 SF%; Hﬂﬁe 9388

[bee, go, shrug]

(continued on right) (Préb?gre Eg aﬁ{?r’%l ©

1of4

Implementation Details:
Your Anagr ans class must have the following public constructuod anethods:

public Anagrans(Set<String> dictionary)
In this constructor you should initialize a new girzan solver over the given dictionary of words. uMoay assume th
the words in the set are in alphabetical order.nBiomodify the set passed to your constructor.

You should throw anl | egal Ar gument Except i on if the set passed isil | .

public Set<String> getWrds(String phrase)

In this method you should return a set containihgvards from the dictionary that can be made usioge or all of th
letters in the given phrase, in alphabetical orddfor example, if your anagram solver is using thetionary|
corresponding tali ct 1. t xt and you are passed the phrasar bara Bush", you should return a set containing
elementg abash, aura, bar, barb, brush, bus, hub, rub, shrub, sub].

You should throw anl | egal Ar gunent Except i on if the string ishul | .

4%

the

public void print(String phrase)

In this method you should use recursive backtrackinfind and print all anagrams that can be formsmhg all of the

letters of the given phrase, in the same orderf@amdat as in the example log on the previous pdgm. example, if you
anagram solver is using the dictionary correspandrdi ct 1. t xt and you are passed the phrabai r br ush", your
method should produce the following output:

[bar, huh, sir]
[bar, sir, huh]
[briar, hush]

[huh, bar, sir]
[huh, sir, bar]
[hush, briar]

[sir, bar, huh]
[sir, huh, bar]

You should throw anl | egal Ar gument Except i on if the string isnul | . An empty string generates no output.

=

public void print(String phrase, int max)

In this method you should use recursive backtrackinfind and print all anagrams that can be formeihg all of the
letters of the given phrase and that include att ms words total, in the same order and format asenettample log o
the previous page. For example, if your anagralvesas using the dictionary correspondingdioct 1. t xt and this
method is passed a phrasé béi r br ush” and a max of 2, your method should produce tHeviahg output:

[briar, hush]
[hush, briar]

If max is O, print all anagrams regardless of how manydedhey contain. For example, if using the saiogothary ang
passed a phrase 'ofiai r br ush" and a max of 0, the output is the same as thatrskearlier on this page with no max

You should throw aml | egal Ar gunent Except i on if the string isnul | or if the max is less than 0. An empty st
generates no output.

\1%4

>

ing

The providedG ammar Mai n program calls your methods in a 1-to-1 relatiopsballingget Wor ds every time before

calling pri nt. But you should not assume any particular ordezatis by the client. Your code should still wafkhe
methods are called in any order, any number ofdime

20f4

Recursive Algorithm:

Generate all anagrams of a phrase using recursigktacking. Many backtracking algorithms involeamining all
combinations of a set of choices. In this probléme, choices are the words that can be formed ttemphrase. A
"decision” involves choosing a word for part of filerase and recursively choosing words for the aéghe phrase. If
you find a collection of words that use up alltoé tetters in the phrase, it should be printeduigua.

Part of your grade will be based on efficiency. eQvay to implement this program would be to conselery word in
the dictionary as a possible "choice." Howeves ttould lead to a massive decision tree with éftaseless paths and a
slow program. Therefore for full credit, to impeefficiency when generating anagrams for a giverage, you must
first find the collection of words contained in thdarase and consider only those words as "choioggjur decision tree.
You should also implement the secand nt method so that it backtracks immediately oncedteds the max.

The following diagram shows a partial decision tf@egenerating anagrams of the phrasar bara bush". Notice
that some paths of the recursion lead to dead drolsexample, if the recursion choosesr a" and" bar b", the letters
remaining to use argbhs], and no choice available uses these letters, sonbt possible to generate any anagrams
beginning with those two choices. In such a caser code should backtrack and try the next path.

One difference between this algorithm and othektacking algorithms is that the same word can app®re than once
in an anagram. For example, frommar bar a bush" you might extract the wortbar " twice.

print("barbara bush");

letters to use:
[aaabbbhrr su]

choices: chosen:
[abash, aura, bar, []
barb, brush, bus,
hub, rub, shrub, sub]

o \ T

letters to use: letters to use:

[abbrru] [abbbhr s]

choices: chosen: choices: chosen:

[abash, aura, bar, [abash] [abash, aura, bar, [aura]

barb, brush, bus, barb, brush, bus,

hub, rub, shrub, sub] hub, rub, shrub, sub]

letters to use: letters to use:

[bru] [ru]

choices: chosen: choices: chosen:
[abash, aura, bar, [abash, bar] [abash, aura, bar, [abash, barb]
barb, brush, bus, barb, brush, bus, hub,

hub, rub, shrub, sub] rub, shrub, sub]

letters to use:

[]

choices: chosen:

[abash, aura, bar, [abash, bar, rub] | Output:

barb, brush, bus, ”| [abash, bar, rub]
hub, rub, shrub, sub]

3of4

Letterl nventory Class:

An important aspect of simplifying the solutionrt@any backtracking problems is the separation afirs#ee code from
code that manages low-level details of the probl&ie have seen this in several of our backtrackxamples, such as 8
gueens (recursive code @ueens. j ava, low-level code irBoar d. j ava). You are required to follow a similar strategy
in this assignment. The low-level details for aaags involve keeping track of letters and figurmug when one group of
letters can be formed from another. We are pragigiou a class calldckt t er | nvent or y to help with this task.

A Letterlnvent ory object represents the count of each letter fro #und in a given string (ignoring whitespace,
capitalization, or non-alphabetic characters). &le, aetterl nvent ory for the string'Hel | o t here" would
keep count of 3Es, 2 Hs, 2Ls, 1 0, 1 R, and Thet oSt ri ng of this inventory would b&[eeehhl | ort]".

You can add and subtract phrases fromeat er I nventory and ask whether an inventory contains a phrasar. F

example, addinghi ho!" to the above inventory would produtgeeehhhhi | I oort]". Subtracting'he he he"

from this would produce[hi I | oort]". If we asked whether this inventargont ai ns("t ool "), the resultisrue.
Constructor/Method Description

public Letterlnventory(String s) constructs a letter inventory for the given string

public void add(Letterlnventory |i) adds the letters of the given string/inventoryhis bne

public void add(String s)

publ i ¢ bool ean contains(Letterlnventory li) |returnstrue if this inventory contains all letters at least|as

public bool ean contains(String s) many times as they appear in the given string/itorgn

public bool ean i sEnpty() returnst r ue if the inventory contains no letters

public int size() returns the total number of letters in the inveytor

public void subtract(Letterlnventory i) removes letters of the given string/inventory frtms one;

public void subtract(String s) throwsl | | egal Ar gunent Except i on if not contained

public String toString() string version of inventory, such aseehhl [ort]"

Development Strategy and Hints:

Your pri nt method must produce the anagrams in the same fasria the log. The easiest way to do this isuitd up
your answer in a list, stack, or other collectidrhen you campri nt | n the collection and it will have the right format.

The providedanagr amvli n program can read its input from different dictipnéiles. It is initially set to use a very
small dictionarydi ct 1. t xt to make testing easier. But once your code wuiikis this dictionary, you should test it
with larger dictionaries such as the providiédt 2. t xt anddi ct 3. t xt. You can find other larger dictionaries here:

* http://www.puzzlers.org/dokuwiki/doku.php?id=solgiwordlists:start

One difficult part of this program is the secondsien ofpri nt that limits the number of words that can appeah
anagrams. We suggest you do this part last, ligifiinting all anagrams regardless of the nundfexrords.

Style Guidelines and Grading:

Part of your grade will come from appropriatelylimting recursive backtracking to implement your aithm as

described previously. We will also grade on thegahce of your recursive algorithm; don't creatcigb cases in your
recursive code if they are not necessary or repagsgs already handled. Redundancy is another meding focus;
some methods are similar in behavior or basedfodfioh other's behavior. You should avoid repekigid as much as
possible. Your class may have other methods bet#iidse specified, but any other methods you addidhbepri vat e.

You should follow good general style guidelines hsuss: making fieldgri vat e and avoiding unnecessary fields;
declaring collection variables using interface gjpappropriately using control structures like Isogndi f /el se;
properly using indentation, good variable namestgpds; and not having any lines of code longen th20 characters.

Comment your code descriptively in your own wortdshe top of your class, each method, and on comgsetions of
your code. Comments should explain each methatisuvior, parameters, return, pre/post-conditions, exceptions.
For reference, our solution is around 85 lines limutuding comments and blank lines.

4 0f 4

