CSE 143, Winter 2009

Programming Assignment #5: Grammar Solver (20 points)
Due Thursday, February 12, 2009, 11:30 PM

This program focuses on programming with recursi®arn in files namedy anmar Sol ver . j ava andgr ammar . t xt
from the Homework section of the course web siteu Will need support file& ammar Mai n. j ava, sent ence. t xt ,
andsent ence2. t xt from the Homework section of the course web gikece them in the same folder as your class.

Languages and Grammars:

A formal language is a set of words and/or symbols along with adfetules, collectively called theyntax of the
language, defining how those symbols may be usgetlter. Agrammar is a way of describing the syntax and symbols
of a formal language. Many language grammars easelscribed in a common format called Backus-NaumHBNF).

Some symbols in a grammar are calledninals because they represent fundamental words of tiguége. A terminal
in the English language might be the word "boy"'romn" or "Jessica". Other symbols of the grammar @llednon-
terminals and represent high-level parts of the languagésgyisuch as a noun phrase or a sentence. Evarenuainal
consists of one or more terminals; for example vérd phrase "throw a ball" consists of three teahivords.

The BNF description of a language consists of aobelerivationrules, where each rule names a symbol and the legal
transformations that can be performed betweensyrabol and other constructs in the language. Kamele, a BNF
grammar for the English language might state trsgrdence consists of a noun phrase and a verbeplarad that a noun
phrase can consist of an adjective followed by annor just a noun. Rules can be describmdrsively (in terms of
themselves). For example, a noun phrase mighistafsaan adjective followed by another noun phrase

A BNF grammar is specified as an input file contagrone or more rules, each on its own line, offtren:
<non-terminal>: : =<rule>| <rule>| <rule>| ...| <rule>

A :: = (colon colon equals) separator divides the nomitel from its expansion rules. There will be d@kaone: : =
per line. A| (pipe) separates each rule; ifdhisronly one rule for a given non-terminal, theilk be no pipe characters.
The following is a valid example BNF input file @eibing a small subset of the English language n-dwminal names
such ass>, <np> and<t v> are short for linguistic elements such as sentenmmmun phrases, and transitive verbs.

<s>::=<np> <vp>
<np>:: =<dp> <adj p> <n>| <pn>

<dp>::=the|a

<adj p>: : =<adj >| <adj > <adj p>

<adj >::=hi g| fat| green|wonderful | faul ty| sublim nal | pretentious
<n>:: =dog| cat | man| uni versi ty| fat her| not her| child|television
<pn>::=John| Jane| Sal | y| Spot | Fred| El np

vp>:: =<tv> <np>|<iv>

<tv>::=hit]| honored| ki ssed| hel ped

<i v>::=di ed| col | apsed| | aughed| wept

Sample input file sent ence. t xt

The language described by this grammar can represatences such as "The fat university laughed™'Bimo kissed a

green pretentious television". This grammar camlgsicribe the sentence "Stuart kissed the teatleeduse the words
"Stuart" and "teacher" are not part of the grammiie grammar also cannot describe "fat John caidfSpot" because
there are no rules that permit an adjective befoegroper noun "John", nor an object after intitaugsverb "collapsed”.

Though the non-terminals in the previous languagesarrounded by >, this is not required. By definition any token
that ever appears on the left side of the of any line is considered a non-terminal, and tkgn that appears only on
the right-hand side of: = in any line(s) is considered a terminal. Eachk'timon-terminal will be a non-empty string that
does not contain any whitespace. Each rule migh¢ lsurrounding spaces around it, which you wdich#® trim. There
also might be more than one space between pastsubé, such as betweern andnp below. For example, the following
would be a legal equivalent of the last three liokthe previous grammar:

<vp>: = tv np| v
tv::=hit | honor ed| ki ssed| hel ped
iv::= di ed] collapsed |Ilaughed |wept

1of4

Program Description:

In this assignment you will complete a program tleatds an input file with a grammar in Backus-Naorm and allows
the user to randomly generate elements of the geamiviou will use recursion to implement the cofgaur algorithm.

You are given a client progra@ anmar Mai n. j ava that does the file processing and user interact¥ou are to write a
class calleda anmar Sol ver that manipulates a grammaG anmar Mai n reads a BNF grammar input text file and
passes its entire contents to you as a list afigdri For example, if your program was to examireegrammar on the
previous page, your object would be passed a B0slinng of the entire contents of that gramma. fiYour solver must
break that string into its lines and symbols arldsgo that it can generate random elements afrdramar as output.

Your program should exactly reproduce the format general behavior demonstrated in this log, aljhogpu may not
exactly recreate this scenario because of thelsigitif the names that your code performs.

Vel come to the CSE 143 random sentence gener at or
VWhat is the name of the grammar file? sentence. txt

Avai |l abl e synbols to generate are:

b;adj>, <adj p>, <dp>, <iv> <n> <np> <pn>, <S>, <tv>, <vp>]
at do you want to generate (Enter to quit)? <dp>

How many do you want nme to generate? 3

t he
t he
a

Avai |l abl e synbols to generate are:

L@adj>, <adj p>, <dp>, <iv> <n>, <np>, <pn>, <s>, <tv>, <vp>]
at do you want to generate (Enter to quit)? <np>

How many do you want nme to generate? 5

a wonderful father

the faulty nman

Spot

t he sublimnal university
Sally

Avai |l abl e synbols to generate are:

b;adj>, <adj p>, <dp>, <iv> <n> <np> <pn>, <S>, <tv>, <vp>]
at do you want to generate (Enter to quit)? <s>

How many do you want me to generate? 10

a pretentious dog hit El no

a green green b|P dog honored Fred

the big child coll apsed o .

a sublimnal dog kissed the sublimnal television
Sal ly | aughed

Fred wept

Fred died .

the pretentious fat sublimnal nother wept

El no honored a faulty tel evision

El mo honored El no

Avai |l abl e synbols to generate are:
b;adj>, <adj p>, <dp>, <iv> <n> <np> <pn>, <S>, <tv>, <vp>]
at do you want to generate (Enter to quit)?

Recursive Algorithm:

You can generate random elements of a grammar asiegursive algorithm. To generate a random oenuge of a
symbol S in the grammar:

» If Sis aterminal symbol, there is nothing to do.

» If Sis a non-terminal symbol, choose a random esioa rule R for S. For each of the symbols inrlle R,
generate a random occurrence of that symbol.

For example, the grammar on the previous page dmulgsed to randomly generatesa non-terminal for the sentence,
"Fred honored the green wonderful child", as showthe diagram on the next page:

20f4

<S>

<np> <vp>
¥

<pn> <tv> <np>
<dp> <adj p> <n>
o Sa
<adj > <adj p>
v
<adj >
A 4 A \
Fred honor ed t he green wonder f ul child

Generating a non-terminal involves picking onetsfrules at random and then generating each pdhaofrule, which
might involve more non-terminals to recursively geate. For each of these you pick rules at randioghgenerate each

part, etc. When you encounter a terminal, simpéyude it in your string. This becomes a base o&#iee process.

Required Methods:

public G anmar Sol ver (Li st<String> rul es)

In this constructor you should initialize a new rgraar solver over the given BNF grammar rules, wteaeh rule

corresponds to one line of text as shown in thedit the previous page. Your constructor shouddibapart the rule
and store them intoleap so that you can later look up parts of the gramefiaciently. Do not modify the list.

You should throw anl | egal Ar gunent Excepti on if the list isnul | or has a size of 0. You should also throw

Il egal Argunment Excepti on if the grammar contains more than one line forghme non-terminal. For example
two lines both specified rules for symbials>" , this would be illegal and should result in tixeeption being thrown.

publi ¢ bool ean contains(String synbol)

In this method you should retutm ue if the given symbol is aon-terminal in the grammar anflal se otherwise. Fg
example, when using the grammar described prewipysl would returnt r ue for a call ofcont ai ns("<s>") and
f al se for a call ofcont ai ns(" <f 0co>") orcont ai ns("green") ("green" is aterminal in the language).

You should throw anl | egal Ar gument Except i on if the string isnul | or has a length of 0.

public Set<String> get Synbol s()

In this method you should return all non-terminahbols of your grammar as a sorted set of strirfgs. example, whe
using the grammar described previously, a callgef Synbol s() would return a set containing the ten elem
["<adj>", "<adjp>", "<dp>", "<iV>", "<n>", "<np>", "<pn>", "<S>", "<tV>", "<Vp>"],

public String generate(String synbol)

In this method you should use the grammar to gém@aandom occurrence of the given symbol andsymuld return i
as astring. If the string passed is a non-terminal in yotangmar, you should use the grammar's rules to se@ly
expand that symbol fully into a sequence of termsin&or example, when using the grammar descriloeth® previou
pages, a call ofener at e(" <np>") might potentially return the stringthe green wonderful child". If the
string passed is not a non-terminal in your gramiyaw should assume that it is a terminal symbadl simply return it
For example, a call afener at e(" gr een") should returri gr een".

You may want to look up the methods of Rendom class inj ava. util to help you make random choices betw
rules. You should throw an | egal Ar gunent Except i on if the string isnul | or has a length of 0.

S

an
A

n
ents

192}

een

3of4

Development Strategy and Hints:

The hardest method égner at e, so write it last. The directory crawler progrénmm lecture is a good guide for how to
write this program. In that program, the recurgivethod has a for-each loop. This is perfectlyeptable; if you find
that part of this problem is easily solved withoag, go ahead and use one. In the directory crathle hard part was
writing code to traverse all of the different di@tes, and that's where we used recursion. Far gagram the hard part
is following the grammar rules to generate diffeqgarts of the grammar, so that is the place taesersion.

For this program you must store the contents ofgtfaenmar into avap. As you know, maps keep track of key/value
pairs, where each key is associated with a paatickdlue. In our case, we want to store infornrmaibout each non-
terminal symbol. So the non-terminal symbols beedeys and their rules become values. Noticethigajet Synbol s
method requires that the non-terminals be listesbited order, which may affect what kind of majp yse. Other than
theMap requirement, you are allowed to use whatever coctst you want from the Java class libraries.

One problem you will have to deal with early instiirogram is breaking strings into various parthere are several
ways to do this, but we strongly recommend that yseithest ri ng object'sspl it method. Theplit method breaks

a large string into an array of smaller string twkeit accepts delimiter string parameter and looks for that delimiter as
the divider between tokens. The delimiter stripgssed tapl it are calledregular expressions, which are strings that
use a particular syntax to indicate patterns of.tekhey can be confusing, but learning about r@gekpressions is
helpful for computer scientists and programmeraniUnix/Linux tools, for example, use regular egsions as input.

To split a string by : = characters you simply pass those charactespitdt. To split by whitespace, we want our
delimiter to be a sequence of one or more spac#®ratabs. This can be accomplished by puttingaces and a tab

inside[] brackets and putting-aplus sign after the brackets to indicate "1 oreforTo split on a pipe character, we
can't just pass the pipe character as a String eaglid/ with the: : = becausg has a special meaning in regular
expressions. So we must enclose [t inbrackets as well. The following examples sumneattiese regular expressions:

String s1 = "exanple::=foo bar |baz";

String[] partsl = sl.split("::="); /1 ["exanple", "foo bar |baz"]

String s2 = "the quick br own fox";

String[] parts2 = s2.split("[\t]+"); /1 ["the", "quick", "brown", "fox"]
String s3 = "foo bar|baz |quux nunble";

String[] parts3 = s3.split("[|]"); /1 ["foo bar", "baz ", "quux nunble"]

One minor issue that comes up with the split abisvéhat if the string you are splitting begins wahwhitespace
character, you will get an empty string at the frofithe resulting array, so you shotldi mstrings as needed. Also, the
parts of a rule are guaranteed to be separatedchiigspace, but once you've used spaces to spliutaeall the spaces
are gone. If you want spaces between words whearggng strings to return, you must include thepsaces yourself.

Creative Aspect (gr anmar . t xt):

Along with your program, submit a filgr ammar . t xt that contains a valid grammar in BNF format thext ©e used as
input to your grammar solver. For full credit, tfie should be in valid BNF format, should contaihleast 5 non-
terminals, and should be your own work. This wélworth a small portion of your grade on the agsignt.

Style Guidelines and Grading:

Part of your grade will come from appropriateigiing recursion to implement your algorithm as atésed previously.
We will also grade on the elegance of your recersilgorithm; don't create special cases in yoursage code if they
are not necessary. Redundancy is another majdingrdocus; you should avoid repeated logic as maglpossible.
Your class may have other methods besides thosédisdebut any other methods you add shoulghievat e.

You should follow good general style guidelines bsuss: making fieldgri vat e and avoiding unnecessary fields;
declaring collection variables using interface gjpappropriately using control structures like Isagndi f /el se;
properly using indentation, good variable namestgpds; and not having any lines of code longen th20 characters.

Comment your code descriptively in your own wortshe top of your class, each method, and on comgsetions of
your code. Comments should explain each methatisuvior, parameters, return, pre/post-conditions, exceptions.
For reference, our solution is around 75 lines limutuding comments and blank lines.

4 0f 4

