CSE 143, Winter 2009

Programming Assignment #3: Stable Marriage (20 points)
Due Thursday, January 29, 2009, 11:30 PM
This program focuses on usinget and Map collections. Turn in two files named
MatchMaker.java andcouples.txt from the Homework section of the course web sfiBu

will also need the support fileBerson.java and StableMarriageMain.java from the
Homework section of the course web site; place timetine same folder as your program.

Program Description:
The "stable marriage" problem is a classic compst@nce problem of matching men and women
into married couples. The problem examines a tatput data for an equal number of men and womérere each
person has an ordered queue of preferences for vitatperson would like to marry. Your task isptr up the men
with the women in such a way that no one is ursadisvith their partner. You will use a particukaigorithm to pair up
("engage") men to women and repeatedly improve#iengs as necessary until every person is sadisfi

Consider an engagement (M, W) between a man M amdan W. We say that (M, W) isstable if either M or W has
another person they would rather marry (and wholaveather marry them as well). In other words, warstable
engagement meets one or more of the following dimmui:

» There is another woman Much that M and \Wboth prefer each other to their current partnida; is, M prefers
the pair (M, W) to (M, W) and W is either single or is engaged to a man she légsthan M; or,

* There is another manMuch that Mand W both prefer each other to their currentrjgaig; that is, W prefers the
pair (M,, W) to (M, W) and M is either single or is engaged to a woman he liesthan W.

Gale-Shapley Algorithm for Stable Marriages:

In 1962 David Gale and Lloyd Shapley (mathematezsiemics professors from Berkeley and UCLA) creaaed
algorithm for computing a set of stable marriagasany set oN men's and women's preferences. This Gale-Shapley
algorithm guarantees that within N passes oved#ta you will find a way to marry everyone with unastable pairings.

The input into the algorithm is a set of men andet of women, where each person carries an assoapieue of
preferred people to marry.

MEN :=set of all men. (initially all are s ingle)
WOMEN := set of all women. (initially all are s ingle)

The algorithm consists of a series of match-maKnoginds" in which pairs become engaged. A roundoissidered
"stable" if there are no single men in the setiénd one changes their partner during the entitend. Generally match-
making rounds are performed until a stable rouralis; at which point the solution is stable andatgerithm stops.

Algorithm for One Match-Making Round:
for each man M in MEN:

if M is single and still has at least one w oman left in his preferences queue:
let W = remove M's most-preferred woman remaining from the preferences queue.
if W is single:
(M, W) become engaged.
else:
W must be currently engaged to some other man M2,

if W prefers M over M2:
(M, W) become engaged.
M2 becomes single.

Consider the input data on the next page. Theanetisted first, then the women. Each line cdasi$ a person's hame,
followed by a list of whom that person would like marry, from most to least. For example, Jerryilgbanost like to
marry Miranda and would least like to marry ChadotMiranda desires Newman and would be leastyhajith George.

1of4

George:Charlotte,Carrie,Miranda,Samantha
Jerry:Miranda,Samantha,Carrie,Charlotte
Kramer:Samantha,Charlotte,Carrie,Miranda
Newman:Samantha,Charlotte,Miranda,Carrie

Carrie:Newman,Jerry,Kramer,George
Charlotte:Jerry,George,Kramer,Newman
Miranda:Newman,Jerry,Kramer,George
Samantha:Jerry,Kramer,George,Newman

If you run the Gale-Shapley algorithm on the abdat, the algorithm produces the following results:
Round 1:

» George proposes to Charlotte.
» Jerry proposes to Miranda.
» Kramer proposes to Samantha.
* Newman's preference is Samantha, but she's engage@dmer and prefers him, so he does nothing.
Couples so far: (George, Charlotte), (Jerry, Nil@), (Kramer, Samantha).
Round 2:

* George is already engaged, so he does nothing.

« Jerryis already engaged, so he does nothing.

» Kramer is already engaged, so he does nothing.

* Newman's next preference is Charlotte, but shejaged to George and prefers him, so he does nothing
Couples so far: (George, Charlotte), (Jerry, Nila), (Kramer, Samantha).

Round 3:

* George is already engaged, so he does nothing.

« Jerryis already engaged, so he does nothing.

» Kramer is already engaged, so he does nothing.

* Newman's next preference is Miranda; she's engagéelry but prefers Newman. Jerry gets dumped.
Couples so far: (George, Charlotte), (Kramer, &atim), (Newman, Miranda)

Round 4:
* George is already engaged, so he does nothing.
« Jerry's next preference is Samantha; she's engad@dmer but prefers Jerry. Kramer gets dumped.
* Kramer's next preference is Charlotte, but shejaged to George and prefers him, so he does nothing

Newman is already engaged, so he does nothing.
Couples so far: (George, Charlotte), (Jerry, Sahgg, (Newman, Miranda)

Round 5:

* George is already engaged, so he does nothing.

« Jerryis already engaged, so he does nothing.

» Kramer proposes to Carrie.

* Newman is already engaged, so he does nothing.

Couples so far: (George, Charlotte), (Jerry, Sdahag, (Kramer, Carrie), (Newman, Miranda)

Round 6:

* No changes; algorithm has stabilized.

Provided Files:
You are given two files to use to help you writes thssignment:

» StableMarriageMain.java . The client program to run the stable marriageusation. Performs all file I/O.
* Personjava : A class representing each person in the sinanlagilong with their fiancee and preferences.

A set of provided data files to use as input fa #ifigorithm is also posted on the Homework seatiaihe web site. We
will not provide testing code for you other thae ghableMarriageMain.java program, and we do not guarantee that
this program is an exhaustive test. You shoultbperadditional testing of your own before you sutoyour program.

Your class will need to interact witterson objects to solve the overall problem.PArson has the following methods:

20f4

public void engageTo(Person other)

Sets this person to be engaged to the given o#trsop. Subsequent calls detFiancee on this person will retur
other, and subsequent calls getFiancee on other will return this person. If either this person aher wer¢
previously engaged, their previous engagementlisccaff and the previous partner is set to belsing

public String getName()
Returns this person's name, suchGeorge" .

public Person getFiancee()
Returns the person to whom this person is curramtjaged. If this person is single, returaks .

public Queue<String> getPreferences()

Returns a queue of the names of people this pewsard like to marry, in order from most preferrefdo(it) to least

preferred (back of the queue). You can and shmddify the contents of this queue as your programunning. Fo
example, you can remove a person from the queimgiwate that you have already considered propdsirnigat person.

public Map<String, Integer> getRankings()

Returns a map of this person's rankings of allroplig¢ential partners. The keys of the map are lp&opames, and the

values arant s representing this person's ranking for that fi@lepartner. You can pass a person's name tonHpes
get method to find out the ranking for that nank@r example, if you have Rerson object stored in a variable nam
boy and you want to know the boy's ranking for thé mmed'Carrie” , you could write:

int rank = boy.getRankings().get("Carrie");

public boolean isSingle()
Returngrue if this person has no current engagement parifirig person's fiancee il); otherwise returnfalse

public String toString()

Returns a string representation of tiMerson that includes the person's name and fiancee sthtasy, such as

"Newman: single" or "George: engaged to Charlotte (rank 1)"

Implementation Details:
For this assignment you are to write a class calladhMaker that performs the Gale-Shapley algorithm on argset
of men and women. You must write the following hueats:

public MatchMaker(Set<Person> men, Set<Person> wome n)
In this method you should initialize a new matctkareover the given sets of men and women. You asayme that 3

>

=

ed

men and women in both sets are initially singlet #ach set contains at least one person, anthtéhaets are the same

size, that no two people have exactly the same ndraethe sets and their elements arenobt , and that evererson
object has every member of the opposite sex ihdrsankings and preferences collections.

public Person getFiancee(String name)
This method should return the Person object reptiegpthe current fiancee of the person with theeginame. Fd

example, if passetiloe" , you should return thBerson object representing Joe's fiancee. If the pemsayuestion is
single, you should retumull . You may assume that the name matches &a&msen 's name from the original data se

public int getRound()
In this method you should return the number ofdineent round of match making. WhemmatchMaker is first createg
it is on round 0. Each time thextMatchRound method is called, the round number increases by 1.

public boolean isStable()

In this method you should return true if thiatchMaker is in a stable state; that is, if the Gale-Shagaleyrithm ha
finished running to produce a stable set of engagesrbetween the men and women. WhemidtehMaker is initially
created, it is not stable, so this method shoulgrm¢false . If nextMatchRound is called and the round is a "stal
round as defined previously, you should remembsrahd returnrue for subsequent calls teStable

3of4

°Z)

=

—

S.

e

public void nextMatchRound()
In this method you should perform a single roundhef Gale-Shapley algorithm as previously descriioeghatch men
and women. As you perform each round you showdd atake note of whether the round was "stable"ragiqusly,
defined, because you will need to report this imfation from youisStable method.

public String toString()
In this method you should return a string represgrthe current state of the men and women and éimgiagements, with
each man on one line followed by each woman onlioee For example, if a client program createtiachMaker
using the example data on the previous page, peedione round, then printed tkiatchMaker , the output would be:

George: engaged to Charlotte (rank 1)
Jerry: engaged to Miranda (rank 1)
Kramer: engaged to Samantha (rank 1)
Newman: single

Carrie: single

Charlotte: engaged to George (rank 2)
Miranda: engaged to Jerry (rank 2)
Samantha: engaged to Kramer (rank 2)

Notice that the appearance of each line in theutwtprresponds to theString representation of thieerson object.

A major part of this assignment is using sets aagsn Some places in the code you will find that ave &tring of

a person's name, and you want to getPtn@on object that has that name. To facilitate thigheadatchMaker should
maintain a map from namesPerson objects. You can fill this map with data as EhechMaker object is created and
use it in other parts of your code. Use the magpgsopriate to look uperson objects by name efficiently.

Creative Aspect (coupl es. t xt):

In addition to youMatchMaker.java , turn in a text file namecbuples.txt containing your own data set of men and
women and their preferences, in the same formtteaprovided data files. This will form a smallpaf your grade. To
get the credit, you must have an equal number of anel women, at least 3 men and 3 women, and themsst be valid
(every line in proper format, every man/woman nhaste every member of the opposite list in theifgrances list, etc.).
We will also soon provide a place online where gan submit creative data to share with others.

Development Strategy:
We suggest that you develop the program in theviolig stages:
1. Create your class and write "stub” versions ofrtlethods so your code compiles and runs in a teptimgram.
2. Decide some of the data fields you'll want it tefxérack of. Write your constructor and set us¢hields.
3. Write an initial version of th@extMatchRound code that just pairs up each person with thest ihoice. We
suggest that you use debuggmiptin -~ statements to print a message each time one persposes to another.
4. Refine youmextMatchRound code to deal with each person's single/engagéassiareferences, etc.

Style Guidelines and Grading:

Part of your grade will come from correctly follavg the Gale-Shapley algorithm as described indb@iment. Another
part of your grade will come from appropriatelyliathg the collections (lists, sets, and maps) dbed previously.
Redundancy is another major grading focus; avaidmdancy and repeated logic as much as possible.

Properly encapsulate your objects by making ang flalds in your clasprivate . Avoid unnecessary fields; use fields
to store important data of your objects but natttve temporary values only used within a singletcane method.

You should follow good general style guidelinestsas: appropriately using control structures ligeps andf /else
statements; avoiding redundancy using techniqueb sis methods, loops, aiiitelse factoring; properly using
indentation, good variable names, and proper tygadnot having any lines of code longer than @0 acters.

Comment your code descriptively in your own wortishe top of your class, each method, and on comgéetions of
your code. Comments should explain each methetiiavior, parameters, return, and pre/post-conditidfor reference,
our solution is around 80 lines long including coemts, though you do not have to match this exactly.

4 0f 4

