CSE 143, Winter 2009

Programming Assignment #2: HTML Validator (20 points)
Due Thursday, January 22, 2009, 11:30 PM

This program focuses on usirgjack and Queue collections. Turn in three files nametim Val i dat or . j ava,
test. htm, andout put . t xt from the Homework section of the course web i@u will also need the support files
namedHt nl Tag. j ava andTest Val i dat or . j ava from the web site; place them in the same foldeyaur program.

Ht m Val i dat or . j ava is your program, andest . ht M andout put . t xt are a test case you will create and its output.

Program Description:

In this assignment you will write a class that eixsa HTML files to figure out whether they represtralid” sets of
tags. You will use stacks and queues to examiméailps and figure out whether they match appragyiat

Pages on the World Wide Web are written in a lagguaalled Hypertext Markup Language,ldfFML. An HTML file
consists of text surrounded by special markingiedaéhgs. Tags give special information to the text, sasHformatting
(bold, italic, font size) or layout information (@araph, table, bulleted list). Some tags alsai§peomments or
information about the document itself (header, gilge document type).

A tag consists of a nametkement between less-than and greater-tham symbols. For example, the tag for making text
bold uses the elemehtand is written agb>. Many tags apply to a range of text, in whichecagair of tags is used: an
opening tag indicating the start of the range antdasing tag indicating the end of the range. A closinghas a@ slash
after its< symbol, such as/ b>. To make some text bold on a page, one wouldhgutext to be bold between opening
and closing tags,like this</ b>. Tags can be nested to combine effedis<i >likethis</ i ></ b>.

Some tags, such as the tag for inserting a line break, do not cover ageaand are considered to be self-closing. Self-
closing tags do not need a closing tag; for a lireak, only a tag ofbr > is needed. Some web developers write self-
closing tags with an optionalbefore the>, such asbr />.

One problem on the web is that many developers magtkes in their HTML code. All tags that coxerange must
eventually be closed, but some developers forgetase their tags. Also, whenever a tag is nestside another tag,
<i >like this</ i ></ b>, the inner tagi(for italic, here) must be closed before the outer is closed. So the
following is not valid HTML: <i >bold and italic text</ b></i >

Here is an example of a valid HTML file, with itgs in bold:

<l'doctype htm public "-//WBC//DTD HTM. 4.01 Transitional//EN'>
<!-- This is a coment -->
<htm >
<head>
<title>Marty Stepp</title>
<meta http-equi v="Content-Type" content="text/htm ">
<link href="style.css" type="text/css" rel ="styl esheet" />

</ head>
<body>
<p>My nanme is Marty Stepp. | teach at
UW&/ a>.
</ p>

<p>l was at the University of Arizona from 1997 - 2003.
Here is a picture of ny cat:
<inmg src="images/kitteh.jpg" w dth="100" hei ght="100">
</ p>
</ body>
</htm >

You don't need to learn HTML to do this assignmeBitit there are many HTML tutorials and links be ¥Web, such as:

o http://www.w3schools.com/html/
e http://www.cs.washington.edu/190m/

1of4

Implementation Details:

For this program you will write a class namigdr Val i dat or. You will have to use Java® ack andQueue from
java.util. Your class must have the following constructond methods. It must be possible to call theséoadstany
number of times on your object, in any order, aetthe same expected results each time.

public Htm Validator(Qeue<Ht M Tag> tags)
In this constructor you should initialize your \aior for examining the given queue of HTML tagpresenting the
entire contents of an HTML file. For example, thesue for the page shown previously would contanfollowing tags:

front [<! doctype>, <!--> <htm > <head> <title> </title> <meta> <style> </style>,
</ head>, <body>, <p> <a> </p> <p> <ing> </p> </body> </htm>] back

If the queue passed to your constructerusl , you should throw aul | Poi nt er Except i on.

public void set Tags(Queue<Ht m Tag> t ags)
In this method you should set the validator to theegiven queue of tags. Future callgéo Tags andval i dat e should
use this new queue in place of the previous ohthelqueue isul | , you should throw &ul | Poi nt er Excepti on.

public Queue<Ht m Tag> get Tags()

In this method you should return your validatotege of HTML tags. You must always return the sgoeeue contents
that were passed in to the constructos@rTags. If one of your other methods manipulates theugughile processing
it, you must put the queue back to its originalestzefore that method is finished running.

public bool ean validate()

In this method you should print a textual represom of the HTML tags in your queue. Each tagldigs on its own
line. Every opening tag that requires a closinpitareases the level of indentation of followiag4 by four spaces until
its closing tag is reached. The output for the HTie on the first page would be:

<! doct ype>
<l-->
<htm >
<head>
<title>
</title>
<met a>
<l i nk>
</ head>
<body>
<p>
<a>
</ a>
</ p>
<p>
<i ng>
</ p>
</ body>
</htm >

To generate the output for this method, analyze goeue of tags with & ack. The basic idea of the algorithm is that
when you see an opening tag that requires a cldamgyou should push it onto a stack and incrgase indentation.
When you see a closing tag, you should pop thel@mpent from the stack and decrease your indentalf@mu may use a
singlest ack and a singl&ueue (in addition to the queue passed to your validatmwnstructor) to help you compute the
result. You may not use any other collectionsayay etc., though you can create as many simpiablas as you like.

Your method should also retutm ue if the page has valid HTML anfdal se if not. A valid queue of HTML tags is
defined to be one where every opening tag thatsnaedosing tag has one, and where every closmgltses the most
recently opened tag that requires a closing tag.

For example, the following HTML is valid:
<p>bol d text <i>bold and italic text</i> just bold agai n
 nore </p>

The following HTML isnot valid, because the b> appears before thée i >:
<p> bold text <i>bold and italic text just italic</i> neither</p>

The following HTML isnot valid, because theht m > tag is never closed:
<ht ml ><body> <i >bold italic</i> nornmal text</body>

20f4

Error Handling:
Yourval i dat e method should print error messages if you encouwitieer of the following conditions in the HTMU i

» Aclosing tag that does not match the most recantned tag (or if there are no open tags at thiat)p
* Reaching the end of the HTML input with any tagl spen that were never closed.

For example, suppose the previous short HTML fiegavmodified to add several errors, as followsadded unwanted
</ !'doct ype> tag, a deleted/ ti t | e> tag, an added secortlhead> tag, and a deleted body> tag:

<l'doctype htm public "-//WBC//DTD HTM. 4.01 Transitional//EN'>
</!doctype>

<l-- This is a coment -->
<htm >
<head>
<title>Marty Stepp
<meta htt - equi v= Cont ent - Typ content="text/htm ">
<link href="style.css" type="text/css" rel ="styl esheet" />

</ head>
</ head>
<body>
<p>hN nane is Nhrty St epp. teach at
UW/ a>.

</ p>
<p>l attended the University of Arizona from 1997 - 2003.
Here is a picture of n% cat:
; <ing src= |nages/k|tte j pPg" wi dt h="100" hei ght="100">
< >
</htmg

The resulting output for this invalid file should e following:

<! doct ype>
ERROR unexpected tag: </!doctype>

<l-->
<htm >
<head>
<title>
<net a>
<l'i nk>

ERROR unexpected tag: </head>
ERROR unexpected tag: </head>
<body>

<p>
<a>
</ a>
</ p>

<p>
<i ng>
</ p>
ERROR unexpected tag: </ htm >
ERROR uncl osed tag: <bodY>
ERROR uncl osed tag: <title>
ERROR uncl osed tag: <head>
ERROR uncl osed tag: <htm >

The reason that there are two error messages/fogsad> are because neither head> tag seen matches the most
recently opened tag at the time, whicksig t | e>. The four unclosed tags at the end representattiehat those four
tags didn't have a closing tag in the right plawei6 some cases, no closing tag at all).

Because of the simplicity of our algorithm, a sengtistake in the HTML can result in multiple ermessages. Near the
end of the file is &/ ht nl > tag, but this is not expected becatbsey, titl e, andhead were never closed. So the
algorithm prints many errors, including that tite tag is unclosed, though really the problem is thaht M tag was
closed in the wrong place. Also notice that arxpeeted closing tag does not change the indentbgi@h of the output.

The revised algorithm is the following: Examine legag from your queue, and if it is an opening fagsh it onto a stack.
If it is a closing tag, examine the top of yourckta If the two tags match, pop the tag from the ab the stack. If they
don't match, it is an error. When you have extetliie queue contents, print errors for any tagsi@ng on the stack.

30f4

Provided Files:
e HmTag.java: Objects that represent HTML tags for you to pssce
* TestValidator.java: A testing program to run youtt ml Val i dat or code and display the output.

An Ht ml Tag object corresponds to an HTML tag suchps or </t abl e>. You don't ever need to constritir Tag
objects in your validator, but you will processweqge of them that is passed to you. Each hastlosving methods:

public String getEl enent ()
Returns this HTML tag's element name, suchtasl e" .

public bool ean i sOpenTag()
Returns r ue if this tag is an opening tag, such<gs or <ht ni >.

public bool ean matches(Ht m Tag ot her)
Returng r ue if this tag and the given tag have the same elemaropposite types, such dsody> and</ body>.

public bool ean requiresd osi ngTag()
Returns r ue if this element requires a closing tag; usuallg tht r ue, except for a few elements suchbasandi ny.

public String toString()
Returns a string representation of this HTML taghsas' <p>" or" </t abl e>".

Submitting a Test Case:

In addition to yourHt ml Val i dat or . j ava, you will also create a test case of your own Heps verify your validator.
Create a fila est . ht M that contains any (non-empty) contents you likeng with a fileout put . t xt containing the

output you see when you run the validatedsi dat e method on that HTML file's tags. Thest. htmd can be a file

you create from scratch, or you can go to an exjstieb page and save its contents to a file. Tinegse of this exercise
is to make you think about testing. If you prefgy may instead write a Java test program for yalidator and submit
it asMyVal i dat or Test . j ava. You may share your testing code with other sttelen the course message board.

Development Strategy and Hints:
We suggest the following development strategy:

1. Create the class and declare every method. Lesuy enethod's body blank, or make methods retuvalae
like nul | orfal se every time. Get your code to run in the testinggpam (though the output will be incorrect).

2. Implement the bodies of the constructpst Tags, andset Tags methods. Verify them in the testing program.

Write an initial version ofal i dat e that assumes the page is valid and does not vedwoyt errors. Get the
overall algorithm, output, and indentation workfiog valid HTML.

4. Add theval i dat e code that looks for errors and prints appropreter messages.

Style Guidelines and Grading:

Part of your grade will come from appropriateligiing stacks and queues. You may only use theithods shown in
lecture and section; it is forbidden to use therways that are not stack/queue-like. For exanyma,may not call any
St ack methods that accept index parameters. You alsonmiexamine a stack or queue using a “for eamty.|

Redundancy is always a major grading focus; avesdindancy and repeated logic as much as possiptiircode.

Properly encapsulate your objects by making ang flalds in your claspri vat e. Avoid unnecessary fields; use fields
to store important data of your objects but natttoe temporary values only used within a singletoa method.

You should follow good general style guidelinesksas: appropriately using control structures ligepls and f /el se
statements; avoiding redundancy using techniqueb s methods, loops, and/ el se factoring; properly using
indentation, good variable names, and proper tygras$;not having any lines of code longer than ltyacters.

Comment descriptively in your own words at the edyour class, each method, and on complex sectbgsur code.
Comments should explain each method's behavicanpeters, return, pre/post-conditions, and any diaepthrown.

For reference, our solution is around 90 lines loguding comments, though you do not have to m#tcs exactly.

4 0f 4

