CSE 143, Winter 2009

Programming Assignment #1: SortedIntList (20 points)
Due Thursday, January 15, 2009, 11:30 PM
This program focuses on implementing a collectiod mheritance. Turn in a file namé&drt edl nt Li st . j ava from

the Homework section of the course web site. Yoll &s0 need the support filarrayl nt Li st.java from the
Homework section of the course web site; place the same folder as your program.

Program Description:

For this assignment you are to write a class c&ted edl nt Li st that is a variation of thar r ayl nt Li st class written
in lecture. Your class will be an extension (actabs) of the originalr r ayl nt Li st that adds new functionality and
modifies some existing functionality. Your classhwo primary differences from the original list:

* A Sortedl ntLi st must maintain its list of integers in sorted (rd@ereasing) order.
A Sortedl ntList has an option to specify that the numbers shoaildriique (no duplicates).

TheArrayl nt Li st class already has the following constructors aethods:

Method Description

public ArraylntList() constructs an empty list of a default capacity

public ArraylntList(int capacity) constructs an empty list with given capacity

public void add(int val ue) appends given value to end of list

public void add(int index, int value) | inserts given value at given index, shifting sulbser values right
public int get(int index) returns the element at the given index

public int indexCf(int value) returns index of first occurrence of given valued(i not found)
public void renove(int index) removes value at given index, shifting subsequehtes left
public int size() returns current number of elements in the list

public String toString() returns a comma-separated, bracketed String veo§ithe list

The new class should exteadr ayl nt Li st , adding a few new methods and constructors, aediding some existing
methods to improve their functionality. You shoualat modify the contents @f r ayl nt Li st . j ava in any way; if your
code does not work with the provided versiomofay| nt Li st . j ava, you will lose points.

You will implement the following constructors anctthods:

Method Description

public SortedlntList() constructs an empty list of a default capacitygwiihg duplicates

public SortedlntList(constructs an empty list with given capacity andigue” setting

bool ean uni que, int capacity)

public void add(int val ue) possibly adds given value to list, maintaining sdrorder

public void add(int index, int value) | possiblyadds given value to list, maintaining edrorder

public bool ean get Uni que() returns whether only unique values are allowedhénlist

public int indexCf(int value) returns index of an occurrence of the given vatue if not found)

public void setUni que(bool ean uni que) sets whether only unique values are allowed inligigif set to
t rue, immediately removes any existing duplicates ftbmlist

Your class will have a field to keep track of whastlor not it is limited to unique values. The alkan be set to your
second constructor or by callisgt Uni que. Think of it as an on/off switch that each lisish

You will override the twoadd methods to ensure that elements are added indsorter, and you will override the
i ndexOF method to be more efficient by taking advantageheflist's sorted order. All other methods inteetifrom
Arrayl nt Li st should use the default inherited behavior and Ishoot be overridden.

1of3

Implementation Details:
The following sections describe in detail each radtiou must implement in yogor t edl nt Li st class.

public SortedlntlList(bool ean unique, int capacity)
This constructor should initialize a list with tigezen capacity and with the given setting for wieetbr not to limit the
list to unique values ¢ ue means no duplicatesal se means duplicates are allowed). §ee/ set Uni que below.

public SortedlntList()
This constructor should initialize a list of defachpacity with unique set tal se (duplicates allowed).

public void add(int val ue)
public void add(int index, int value)

The twoadd methods must be overridden to ensure a sorted(lT$te single-parametexid should no longer add at the
end of the list, and the two-parameseid should ignore the index passed by the caller.gs€éhmethods should instepd
add the value at an appropriate place to keepghmlsorted order. For example, if the list @ns the values [-3, 7, 18

42] and the user adds the value 27, afterwardishsHould contain the values [-3, 7, 28, 42] in that order. Bothdd
methods should have identical behavior Bbat edl nt Li st ; if the user adds at an index, the index passiph@ed.

Theadd method has to pay attention to whether the chastrequested unique values only. If so, your atethust not
allow any element to be added if that value isaalyein the list. You also should not re-sort thére list every time ar
element is added. Finding the correct index asdriing the element there is more efficient thasarting the whole list.

publ i c bool ean get Uni que()
This method should return the current uniqueneisigdt r ue means no duplicatesal se means duplicates allowed).

public void setUni que(bool ean val ue)
Allows client to set whether to allow duplicateghi list { r ue means no duplicatekal se means duplicates allowed)

If the unique switch is set to off £l se), the list allows any integer to be added, evethat integer is already found

the list (a duplicate). If the unique switch is@nue), any call toadd that passes a value already in the list has rateff

In other words, when the unique switch raue, theadd method should not allow any duplicates to be addedtie list.
For example, if you start with an empty list thashhe unique switch off, adding three 42s willeyate the list [42, 42
42]. But if your list has the unique switch ondam) those same three 42s would generate the sehgteent list [42].

If the client sets unique ta ue when there are already duplicates in the liststtduni que method should remove all of

the duplicates and should ensure that no futurdices can be added unless the client changesettiag back tg
f al se later. If the client changes the unique settmfjadl se, the contents of the list do not immediately cleangany
way, but it will mean that duplicates could be atlttethe list in the future.

public int indexO(int value)
This method should be overridden to take advanthgiee fact that the list is sorted. It should tise faster binary seard
algorithm rather than the sequential search used iyl nt Li st. If the element is found in the list, youndex Ot
code should return its position. If the elementasfound in the list, your method should returmegative number.

You must use the built-iar r ays. bi nar ySear ch method for all index location searching ("Wherea igalue currently
located?" "Where should | insert a new valueXu can find its documentation in the Java API fritra Links sectiorn
of the course web site. For example, to searobxiesl 0-16 of an array callédt a for values 42 and 66, you could writ

/1 index 0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

int[] data = {-4, 2, 7, 10, 15, 20, 22, 25, 30, 36, 42, 50, 56, 68, 85, 92, 103, 0, O0};
int index = Arrays.binarySearch(data, 0, 17, 42); /1 indexl is 10
int index2 = Arrays. bi narySearch(data, 0, 17, 66); /] index2 is -14

WhenArrays. bi nar ySear ch is unable to find a value in the list, it retuansegative number one less than the inde
which the valueavould have been found if it had been in the array. Kkanle, in the example above the value 66 is

found, but if it had been in the list, it would laleen at index 13; therefore the search returdhs Ylou should take

advantage of this information when adding new elgm& your list.
To get access to the r ays class, you shouldrmport java. util.*; atthe beginning of your class.

20of 3

h

e:

X at
not

Development Strategy:

We have noticed that many CSE 143 students doealaop their code in stages and do not have a gisadof how to
test their solutions. One of the most importanhtéques for professional developers is to writdecim stages ("iterative
enhancement" or "stepwise refinement") rather thang to do it all at once. It is also importdattest the correctness of
your solution at each stage. As a result, for #sisignment we will provide you with a developmstnategy and some
testing code. The testing code does not test quasgible situation, and we do not guarantee felllit for passing the
provided tests. But it will give you some good mxxdes of the kind of testing code we want you tdenin the future.

We suggest that you develop the program in thevidlg three stages:

1. Write a first version that always allows duplicatexi doesn't worry at all about the issue of uniplaes. We
just want a basic version of the class that keefist an sorted order and that uses binary seanchpeed up
searching. This stage involves all of the follogv{imot necessarily in this order):

a. Create your class file and the overall class header
b. Write the two constructors.

c. Modify the twoadd methods so that they preserve sorted order. Yaumeed to use binary search here
if your solution involves two steps (first locateen insert).

d. Modify i ndexOf so that it uses the binary search method.

2. Modify your code so it keeps track of whether thent wants only unique values. Add any state ssag/ and
modify constructor(s) as needed. Next moddy so that it doesn't add duplicates if the uniquerggist r ue.

3. Write theget Uni que andset Uni que methods. Remember that if the client cals Uni que and sets the value
tot rue, you must remove any duplicates currently in ibie |

We will provide testing code for each of these ¢hsgages. For this program only, you are alloveediscuss how to
write testing code with other students. Keep indrthat our tests are not guaranteed to be exkiaudth particular, you
will want to do a lot of simpler testing before ytvy running any of these high-powered tests teally push the limits.

Style Guidelines and Grading:

You may not use any features from Java's colledtiamework on this assignment, suchfasayLi st or other pre-
existing collection classes. You also may notthsévr r ays. sort method to sort your list.

A major focus of our style grading is redundan@s much as possible you should avoid redundancyrepelated logic
within your code, such as by factoring out commodecfromi f/ el se statements, creating "helper" methods to capture
repeated code, or having some of your methods/ieanets call others if their behaviors are related.

Another way you should avoid redundancy is by zitilj the behavior you inherit from th¥ r ayl nt Li st superclass.
You should not re-implement aiy r ayl nt Li st behavior from that is not modified in your clasalso, if part of your
class's new behavior can make use of the supésctadsavior, you should call constructors/methodshfthe superclass.
For example, tharrayl nt Li st already contains code for adding and removing efémto the list at a specific index,
so if yourSort edl nt Li st code needs to do those things, you should nanpéeiment that functionality. Recall that
you can access behavior from a superclass evehatibeen overridden using theper keyword as shown in lecture.

Properly encapsulate your objects by making ang fiekds in your claspri vat e. Avoid unnecessary fields; use fields
to store important data of your objects but natttive temporary values only used within a singletcane method.

You should follow good general style guidelinestsas: appropriately using control structures ligeps and f /el se
statements; avoiding redundancy using techniquel s methods, loops, and/ el se factoring; properly using
indentation, good variable names, and proper typed;not having any lines of code longer than litfracters. You
should comment your code with a heading at thedfopour class with your name, section, and a dpsori of the
overall program. Also place a comment headingopnof each method, and a comment on any compldore®f your
code. Comment headings should use descriptive ledenpentences and should be written in your owrdsyaexplaining
each method's behavior, parameters, return vadmelspre/post-conditions as appropriate.

For reference, our solution is around 75 lines loguding comments, though you do not have to m#tcs exactly.

30of3

