
CSE 143, Winter 2009
Sample Midterm Exam #2

1. Stacks and Queues. Write a method interleave that accepts a queue of integers as a parameter and
rearranges the elements by alternating the elements from the first half of the queue with those from the
second half of the queue. For example, suppose a variable q stores the following sequence of values:

front [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] back

and we make the call of interleave(q);, the queue should store the following values after the call:

front [1, 6, 2, 7, 3, 8, 4, 9, 5, 10] back

To understand the result, consider the two halves of this list. The first half is [1, 2, 3, 4, 5] and the
second half is [6, 7, 8, 9, 10]. These are combined in an alternating fashion to form a sequence of
interleave pairs: the first values from each half (1 and 6), then the second values from each half (2 and 7),
then the third values from each half (3 and 8), and so on. In each pair, the value from the first half appears
before the value from the second half.

The previous example uses sequential integers to make the interleaving more obvious, but the same process
can be applied to any sequence of even length. For example, if q had instead stored these values:

front [2, 8, -5, 19, 7, 3, 24, 42] back

Then the method would have rearranged the list to become:

front [2, 7, 8, 3, -5, 24, 19, 42] back

Your method should throw an IllegalArgumentException if the queue does not have even size. You
may use one stack as auxiliary storage to solve this problem. You may not use any other auxiliary data
structures to solve this problem, although you can have as many simple variables as you like. You may not
use recursion to solve this problem. For full credit, your solution must run in O(n) time, where n represents
the size of the queue. Use the Queue interface and Stack/LinkedList classes discussed in lecture.

You have access to the following two methods and may call them as needed to help you solve the problem:

public static void s2q(Stack<Integer> s, Queue<Integer> q) {
 while (!s.isEmpty()) {
 q.add(s.pop()); // Transfers the entire contents
 } // of stack s to queue q
}

public static void q2s(Queue<Integer> q, Stack<Integer> s) {
 while (!q.isEmpty()) {
 s.push(q.remove()); // Transfers the entire contents
 } // of queue q to stack s
}

2. Java Collections Framework. Write a method union that accepts two maps (whose keys and values are
both integers) as parameters, and returns a new map that represents a merged union of the two original
maps. For example, if two maps m1 and m2 contain these pairs:

{7=1, 18=5, 42=3, 76=10, 98=2, 234=50} m1
{7=2, 11=9, 42=-12, 98=4, 234=0, 9999=3} m2

The call of union(m1, m2) should return a map that contains the following pairs:

{7=3, 11=9, 18=5, 42=-9, 76=10, 98=6, 234=50, 9999=3}

The "union" of two maps m1 and m2 is a new map that contains every key from m1 and every key from m2.
Each value stored in your "union" map should be the sum of the corresponding value(s) for that key in m1
and m2, or if the key exists in only one of the two maps, that map's corresponding value should be used. For
example, in the maps above, the key 98 exists in both maps, so the result contains the sum of its values from
the two maps, 2 + 4 = 6. The key 9999 exists in only one of the two maps, so its sole value of 3 is stored as
its value in the result map.

You may assume that the maps passed are not null, though either map (or both) could be empty. Though
the pairs are shown in sorted order by key above, you should not assume that the maps passed to you store
their keys in sorted order, and the map you return does not need to store its keys in any particular order.

You may create one collection of your choice as auxiliary storage to solve this problem. You can have as
many simple variables as you like. You should not modify the contents of the maps passed to your method.
For full credit your code must run in less than O(n2) time where n is the combined number of pairs in the
two maps.

3. Linked Nodes. Write the code that will turn the Before picture below into the After picture by modifying
links between the nodes shown and/or creating new nodes as needed. There may be more than one way to
write the code, but you are NOT allowed to change any existing node's data field value. You also should
not create new ListNode objects unless necessary to add new values to the chain, but you may create a
single ListNode variable to refer to any existing node if you like. If a variable does not appear in the
"after" picture, it doesn't matter what value it has after the changes are made.

To help maximize partial credit in case you make mistakes, we suggest that you include optional comments
with your code that describe the links you are trying to change, as shown in Section 7's solution code.

Before After

 Assume that you are using the ListNode class as defined in lecture and section:

public class ListNode {
 public int data; // data stored in this node
 public ListNode next; // a link to the next node in the list

 public ListNode() { ... }
 public ListNode(int data) { ... }
 public ListNode(int data, ListNode next) { ... }
}

list2 1 3

list 2 4 list 2 1 3 4

4. Linked Lists. Write a method removeLast that could be added to the LinkedIntList class that
removes the last occurrence (if any) of a given integer from the list of integers. For example, suppose that a
variable named list stores this sequence of values:

[3, 2, 3, 3, 19, 8, 3, 43, 64, 1, 0, 3]

If we repeatedly make the call of list.removeLast(3);, then the list will take on the following sequence
of values after each call:

after first call: [3, 2, 3, 3, 19, 8, 3, 43, 64, 1, 0]
after second call: [3, 2, 3, 3, 19, 8, 43, 64, 1, 0]
after third call: [3, 2, 3, 19, 8, 43, 64, 1, 0]
after fourth call: [3, 2, 19, 8, 43, 64, 1, 0]
after fifth call: [2, 19, 8, 43, 64, 1, 0]
after sixth call: [2, 19, 8, 43, 64, 1, 0]

Notice that once we reach a point where no more 3's occur in the list, calling the method has no effect.

Assume that we are adding this method to the LinkedIntList class as seen in lecture and as shown
below. You may not call any other methods of the class to solve this problem.

public class LinkedIntList {
 private ListNode front;

 methods
}

5. Recursive Tracing. For each call to the following method, indicate what output is produced:

public void mystery(int x, int y) {
 if (x > y) {
 System.out.print("*");
 } else if (x == y) {
 System.out.print("=" + y + "=");
 } else {
 System.out.print(y + " ");
 mystery(x + 1, y - 1);
 System.out.print(" " + x);
 }
}

Call Output

 mystery(3, 3);
 mystery(5, 1);
 mystery(1, 5);
 mystery(2, 7);
 mystery(1, 8);

6. Recursive Programming. Write a recursive method repeat that accepts a string s and an integer n as
parameters and that returns a string consisting of n copies of s. For example:

Call Value Returned
repeat("hello", 3) "hellohellohello"
repeat("this is fun", 1) "this is fun"
repeat("wow", 0) ""
repeat("hi ho! ", 5) "hi ho! hi ho! hi ho! hi ho! hi ho! "

You should solve this problem by concatenating strings using the + operator. String concatenation is an
expensive operation, so it is best to minimize the number of concatenation operations you perform. For
example, for the call repeat("foo", 500), it would be inefficient to perform 500 different concatenation
operations to obtain the result. Most of the credit will be awarded on the correctness of your solution
independent of efficiency. The remaining credit will be awarded based on your ability to minimize the
number of concatenation operations performed.

Your method should throw an IllegalArgumentException if passed a negative value for n. You are
not allowed to construct any structured objects other than Strings (no array, List, Scanner, etc.) and
you may not use any loops to solve this problem; you must use recursion.

