CSE 143, Winter 2009
Section Handout #20
Sample Final Exam #3

1. Inheritance and Polymorphism. In the table below, indicate in the right-hand cofuthe output
Consider the following classes produced by the statement in the left-hand columifh.the
(System out . printl n has been statement produces more than one line of outpdicate the
abbreviated aS. o. pl n): line breaks with slashes as in "a /b / c" to iathcthree lines of

output with "a" followed by "b" followed by "c". flthe
public class Eye extends Mouth { statement causes an error, fill in the right-haoldimn with the
public void nethodl() { phrase "error" to indicate this.

S.o.pln("Eye 1");
super . net hod1();

) Statement Output
} var 1. met hod1();
public class Muth { var 2. met hod1() ;
public void nethodl() {
S.o.pln("Muth 1"); var 3. net hod1();

var 1. met hod2() ;

public void nmethod2() {

S.o0.pln("Muth 2"); var 2. met hod2() ;

} met hod1(); var 3. met hod2() ;
} var 4. net hod2();
public class Nose extends Eye { var 5. met hod2() ;
public void methodl() {)
S. 0. pl n("Nose 1'): var 6. met hod2() ;
} var 1. met hod3() ;
public void nethod3() { var 2. met hod3();
S.o0.pl n("Nose 3");
var 3. met hod3() ;
} ((Nose) vars). net hod3():
public class Ear extends Eye { .
public void method2() { ((Bye) varl).methodi();
\ S.o.pln("Ear 2"); ((Eye) var4).methodl();
((Nose) varl).method3();
public void nethod3() {
S.0.pln("Ear 3"): ((Mout h) var4). nmet hodl();
) } ((Ear) var5). met hod3();

((Eye) var6).nethod3();

((Mout h) var4).nethod2();

The following variables are defined:

Mout h var1l = new Nose();
Ear var2 = new Ear();
Mout h var3 = new Eye();
oj ect var4 = new Muuth();
Eye var5 = new Nose();
Mout h var6 = new Ear();

Inheritance and Comparable. You have been asked to extend #heayl nt Li st class that we have
been studying. Recall that it includes the follegvpublic constructors and methods:

public ArraylntList() constructs an empty list with default capacity
public ArraylntList(int capacity) constructs an empty list with the given capacity
public void add(int val ue) adds given value to end of list

public void add(int index, int value) |adds given value at given index

public bool ean contains(int val ue) returns whether value occurs anywhere in the list
public int get(int index) returns value at given index

public int indexCf(int value) index of first occurrence of value; -1 if not found
publ i c bool ean i sEnpty() returns whether list contains no elements
public void renove(int index) removes the value at the given index

public int set(int index, int value) sets element at given index to store given value
public int size() returns number of elements in list

public String toString() returns comma-separated string version of list

You are todefine a new class called Hi st oryLi st that extends this class through inheritance. It
should behave like afr r ayl nt Li st except that it should keep track of the historynafdifications to the
list. This history is stored as a sequencestafi ng values indicating the list's state at each poiRar
example, if the operations below at left are perfed, then theidi st or yLi st object should keep track of
the sequence @t ri ngs shown below at right:

Operations History Entries
Hi storyList Tist = new H storyList(); TT"
l'i st.add(18); “118]"
list.add(27); “118, 27]"
list.add(0, 45); "l45, 18, 27]"
list.remove(l), "145, 27]"
Iist.setgo, -15); “1-15, 27]"
list.add(9); "[-15, 27, 91"

When aHi st oryLi st is constructed, the first ri ng in the list above should be added to its history.
Each time any of methodsld, r enove, orset are called, a new entry is added to the histooyatg the
state of the list after the call. You must exacdgroduce the format shown above.

TheseSt ri ngs that are part of the history will be accessedliants using the following new methods:

public int historySize() returns number oft ri ngs in history
public String getH story(int index) | returns given historgt ri ng (O=first, 1=second, etc.

In the example above, after executing the samplde,dibie history size will be 6 and the six diffarbistory
Strings can be accessed by callgenHi st ory passing indexes between 0 and 5. For example:

for (int i =0; i < Ilist.historySize(); i++) {
Systemout.println(list.getH story(i));
}

You must alsanake Hi st or yLi st objects comparable to each other using the Conpar abl e interface.

A Hi st oryLi st with more strings in its history is consideredb® "greater than" one with fewer history
entries. If twoHi storyLi sts have the same number of history entries, the tbae contains more
elements (the one with the greater size) is constti® be greater. If the two lists have the sanmaber of
history entries and the same size, they are corglde be "equal” for this problem.

3. Linked List Programming. Write a methodr enoveDupl i cates that could be added to the
Li nkedl nt Li st class from lecture and section. The method shi@rtbve any duplicates from the linked
list of integers. The resulting list should hakie values in the same relative order as their dicsurrence
in the original list. In other words, a valushould appear before a valuim the final list if and only if the
first occurrence of appeared before the first occurrencg of the original list. For example, if a variable

calledl i st stores the following list:
[14, 8, 14, 12, 1, 14, 11, 8, 8, 10, 4, 9, 1, 2, 5, 2, 4, 12, 12]
After the call ofl i st. renmoveDuplicates(); ,the list should store these values:
[14, 8, 12, 1, 11, 10, 4, 9, 2, 5]
Recall theLi nkedI nt Li st and node classes:

public class LinkedlntList {
private ListNode front;

methods
}
public class ListNode {
public int data; /1 data stored in this node
public ListNode next; // link to next node in the |ist
}

You may not call any methods of your linked lishgd to solve this problem, you may not construgt an
new nodes, and you may not use any auxiliary datectare to solve this problem (such as an array,
Arrayli st, Queue, String, etc). You also may not change aigt a fields of the nodes. You must
solve this problem by rearranging the links ofliee

4. Searching and Sorting.

(a) Suppose we are performindpinary search on a sorted array calledinber s initialized as follows:
/1 index 0 1 2 3 4 5 6 7 8 9 10 11 12
int[] numbers = {-5, -1, 3, 5, 7, 10, 18, 29, 37, 42, 58, 63, 94};

/1l search for the value 33
i nt index = binarySearch(nunbers, 33);

Write the indexes of the elements that would bererad by the binary search (tihéd values in our
algorithm's code) and write the value that woulddtarned from the search. Assume that we argyubm
binary search algorithm shown in lecture and sactio

* |ndexes examined:

* Value Returned:

(b) Write the state of the elements of the array bedfter each of the first 3 passes of the outernoogt of
the selection sort algorithm.

int[] nunbers = {15, 56, 24, 5, 39, -4, 27, 10};
sel ectionSort (nunbers);

(c) Trace the complete execution of the merge sodrékgn when called on the array below, similarly to
the example trace of merge sort shown in the leclides. Show the sub-arrays that are createteby
algorithm and show the merging of sub-arrays iatgér sorted arrays.

int[] nunbers = {15, 56, 24, 5, 39, -4, 27, 10};
mer geSor t (nunbers) ;

5. Binary Search Trees.
(a) Write the binary search tree that would resuhése elements were added to an empty tree iontiés:
* Leia, Boba, Darth, R2D2, Han, Luke, Chewy, Jabba

(b) Write the elements of your tree above in the otdey would be visited by each kind of traversal:

e Pre-order:

* In-order:

* Post-order:

6. Binary Tree Programming. Write a methockqual s that could be added to thent Tr ee class from
lecture and section. The method accepts anotimarybiree of integers as a parameter and complaees t
two trees to see if they are equal to each otRer.example, if variables of typent Tr ee calledt 1 andt 2
have been initialized, tharl. equal s(t 2) will returnt r ue if the trees are equal ahdl se otherwise.

Two trees are considered equal if they have ex#otysame structure and store the same values ricae
in one tree must have a corresponding node in tiner dree in the same location relative to the aud
storing the same value. Two empty trees are cereidequal to each other.

You may define private helper methods to solve ghizblem, but otherwise you may not call any other
methods of the class nor create any data strucsuisas arrays, lists, etc. Your method shoutcdchange
the structure or contents of either of the twodreeing compared.

Recall thd nt Tr ee andl nt Tr eeNode classes as shown in lecture and section:

public class IntTreeNode {
public int data,; /] data stored in this node
public IntTreeNode left; // reference to |eft subtree
public IntTreeNode right; // reference to right subtree

public IntTreeNode(int data) { ... }
public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) {...}

}

public class IntTree {
private IntTreeNode overall Root;

methods

Binary Tree Programming. Write a methodtonbi neW t h that could be added to thet Tr ee class
from lecture and section. The method accepts andimary tree of integers as a parameter and ausbi
the two trees into a new third tree which is retakn The new tree's structure should be a uniothef
structures of the two original trees; it should éamnode in any location where there was a noeééher of
the original trees (or both). The nodes of the riee should store an integer indicating which rod t
original trees had a node at that position (1st phe first tree had the node, 2 if just the sddoee had the
node, 3 if both trees had the node).

For example, supposent Tr ee variableg 1 andt 2 have been initialized and store the following $tee

t1l t2

- F - F

[91 | 0]

-+ /+---+

/ \ / \
oo -+ oo+ oo+ -+
| 6 | | 14| | -3 | 8 |
+---+ +-- -+ T - -+

/ \ / / \

/ \ \ / / \
- -+ oo+ - -+ - - - o
| 91 | 2] | 11f | 81 | 5| | 6 |
+--- /+---+ oo+ +--- +---+\ +--- 4

/ \
-+ oo+
| 4| [1]
T - -+

Then the following call:
IntTree t3 = t1.conbineWth(t2);

will return a reference to the following tree:

t3
Foo-F
| 31
+o--
/ \
/ \
e +- - -
| 3 | | 3 |
+---+ +o- -+
/ \ /
/ \ / \
+o- -t oot oo+ -t
| 31 [1] | 2| | 31
+o- -t +- - - PR PR
/ \
/ \
p— oo -+
| 1] | 2|
+---+ +---+

You may define private helper methods to solve ghizblem, but otherwise you may not call any other
methods of the class nor create any data strucsuisas arrays, lists, etc. Your method shoutcdhange
the structure or contents of either of the two ioagtrees being combined.

