
CSE143 1

5/22/2006 (c) 2001-6, University of Washington 1

CSE 143 Notes 5/22/06

Inheritance
Fine Points & Loose Ends

5/22/2006 (c) 2001-6, University of Washington 2

Topics for Today
• Inheritance recap – what does it mean
• Using super in methods
• (aside: protected)
• Constructors, defaults, and super
• equals and compareTo
• Abstract classes & Interfaces

A good reference for this (and much else about Java) is
Effective Java by Joshua Bloch (A-W, 2001)

5/22/2006 (c) 2001-6, University of Washington 3

Review: Inheritance Facts
• A subclass inherits all instance variables and methods

of the inherited class
• All instance variables and methods of the superclass are

automatically part of the subclass
• Constructors are a special case (later)

• Subclass can add additional methods and instance
variables

• Subclass can provide different versions of inherited
methods

5/22/2006 (c) 2001-6, University of Washington 4

Example (review): Generic Employees
/** Representation of a generic employee. */
public class Employee {

// instance variables
private String name; // employee name
private int id; // employee id number
/** Construct a new employee with the give name and id number… */
public Employee(String name, int id) {

this.name = name;
this.id = id;

}
/** Return the name of this employee */
public String getName() { return name; }
…
/** Return the pay earned by this employee */
public double getPay() { return -17.42; } // ???

…
}

5/22/2006 (c) 2001-6, University of Washington 5

Example (review): Specific Kinds of Employees
• Hourly Employee

public class HourlyEmployee
extends Employee {

// additional instance variables
private double hours; // hours worked
private double hourlyPay; // pay rate

/** Return pay earned */
public double getPay() {

return hours * hourlyPay;
}
…

}

• Exempt Employee
public class ExemptEmployee

extends Employee {
// additional instance variable
private double salary; // weekly pay

/** Return pay earned */
public double getPay() {

return salary;
}
…

}

5/22/2006 (c) 2001-6, University of Washington 6

Employee
Employee stuff

HourlyEmployee

Employee
stuff

HourlyEmp.
stuff

Employee stuff

ExemptEmp.
stuff

In Pictures

ExemptEmployee

CSE143 2

5/22/2006 (c) 2001-6, University of Washington 7

Member Access in Subclasses
• public: accessible anywhere the class can be accessed
• private: accessible only inside the same class

• Does not include subclasses – derived classes have no special
permissions

• Issue: Normally need/want to use superclass
constructors and methods to initialize and manipulate
private data in superclass

• Solution: super

5/22/2006 (c) 2001-6, University of Washington 8

Super in Method Calls (Review)
• One use for super: in any subclass, super.m(args) can

be used to call the version of the method in the
superclass, even if it has been overridden

/** Return the pay of this manager. Managers receive a 20% bonus */
public double getPay() {

double basePay = super.getPay();
return basePay * 1.2;

}

• Typical usage pattern: “wrapper” methods – a method
defined in subclass that does some computation before
and/or after calling corresponding superclass method
• A “custom” version of the method suitable for the subclass

5/22/2006 (c) 2001-6, University of Washington 9

Constructors
• Constructors in subclasses have no more access to

private superclass data than any other methods
• Constructors are not inherited
• Yet we want to use constructors to guarantee proper

initial state of all parts of an object
• Solution: superclass constructors always are executed

one way or another when an object is created
• How? …

5/22/2006 (c) 2001-6, University of Washington 10

Explicit Super in Constructors
• A subclass constructor can explicitly indicate which superclass

constructor should be used for the superclass part of the object.
Syntax:

super(<possibly empty list of argument expressions>)
as the first thing in the subclass constructor's body

• Example:
public HourlyEmployee(String name, int id, double pay) {

super(name, id);
payRate = pay;
hoursWorked = 0.0;

}

5/22/2006 (c) 2001-6, University of Washington 11

Constructor Rules
• Rule 1: If you do not write any constructor in a class, Java

assumes there is a zero-argument, empty one
ClassName() { }

• If you write any constructor, Java does not make this assumption
• Rule 2: If you do not write super(…) as the first line of a

constructor, the compiler will assume the constructor starts with
super();

• Rule 3: When an extended class object is constructed, there must
be a constructor in the parent class whose parameter list matches
the explicit or implicit call to super(…)

5/22/2006 (c) 2001-6, University of Washington 12

A Minimal Class
• If you write class Empty { }

it is equivalent to
class Empty extends Object {

public Empty() {
super();

}
}

• In other words:
• All classes extend Object (either explicitly or implicitly – possibly through a

chain of superclasses)
• When an object is created, a constructor for every class in the inheritance

chain will be called, either explicitly or implicitly
• A class with no constructors or with constructors that don’t explicitly use

super(…) can fail to compile if its superclass does not contain a zero-
argument constructor

CSE143 3

5/22/2006 (c) 2001-6, University of Washington 13

Comparing Objects
• The built-in operators == and != answer the question “are these

two things the same object?”
• Sometimes appropriate; often not what we really want

• Class Object contains (roughly) the following method
public boolean equals(Object other) {

return this == other;
}

• All classes inherit this method if they do nothing further
• Often the meaning of equality depends on the data in the object
• Implementation: methods equals(…) and compareTo(…)
• How do we define these ourselves?

5/22/2006 (c) 2001-6, University of Washington 14

Defining Equals
• Suppose we want to define equals for Employee with the

following meaning: two Employee objects are equal if
they contain the same name and employee number

• First attempt:
public boolean equals(Employee other) {

return this.name.equals(other.name) && this.id == other.id;
}

• Critique:
• Does it capture our notion of “equals”?
• Does it work?

5/22/2006 (c) 2001-6, University of Washington 15

Defining Equals – 2nd Try
• Problem: the method

public boolean equals(Employee other) { … }

overloads equals(Object), it doesn’t override it
• OK, then what about

public boolean equals(Object other) {
return this.name.equals(other.name) && this.id == other.id;

}

• Trouble:
• What if “other” isn’t an Employee object?
• What if it is?

5/22/2006 (c) 2001-6, University of Washington 16

instanceof
• We can’t just cast the parameter to Employee – that

might fail, but we can check with
<object> instanceof <classOrInterface>

which is true if the object is an instance of the given
class or interface (or any subclass or subinterface of the
one given)

• Overuse (or even use?) of instanceof is often a sign of
bad design that doesn’t use inheritance and overriding
appropriately
• But it is what we need to get equals right

5/22/2006 (c) 2001-6, University of Washington 17

Defining Equals – Last Try
• This time for sure….

public boolean equals(Object other) {
if (other instanceof Employee) {

Employee e = (Employee) other;
return this.name.equals(e.name) && this.id == e.id;

} else {
return false;

}
}

5/22/2006 (c) 2001-6, University of Washington 18

Comparisons
• Method compareTo is not defined in Object

• There are classes for which compareTo makes no sense, so we
don’t want to inherit it everywhere

(unlike equals – it always makes sense to ask if one object equals another)

• Instead, classes for which ordering makes sense should
implement interface Comparable
• This interface contains one method: compareTo
• It actually is a generic interface (Comparable<T>), but we’ll

ignore that for now

CSE143 4

5/22/2006 (c) 2001-6, University of Washington 19

Example: compareTo for Employee
• Let’s say that two Employees are compared using their name and,

if that is the same, use the id as a tie breaker
public int compareTo(Object other) { // good enough for an example, but

Employee eo = (Employee) other; // could probably be more concise
int comp = this.name.compareTo(eo.name);
if (comp != 0) {

return comp;
} else if (this.id == eo.id) { // or return this.id – eo.id;

return 0;
} else if (this.id > eo.id) {

return 1;
} else {

return -1;
}

}
• Unlike equals, compareTo should throw an exception if the other object is

not an appropriate type.

5/22/2006 (c) 2001-6, University of Washington 20

Abstract Methods and Classes
• Recall that the Employee class contained a getPay() method
• Have to include it there so polymorphic code can use it (why?)

public double getPay(Employee e) {
…

}

• But no implementation really makes sense
• Class Employee doesn’t contain “pay” instance variables
• So including an implementation of this in Employee is really bogus

/** Return the pay earned by this employee */
public double getPay() {

return 0.0; // ???
}

5/22/2006 (c) 2001-6, University of Washington 21

Abstract Methods and Classees
• An abstract method is one that is declared but not

implemented in a class
/** Return the pay earned by this employee */
public abstract double getPay() ;

• A class that contains any abstract method(s) must itself
be declared abstract

public abstract class Employee { … }

• Instances of abstract classes cannot be created
• Usually because they are missing implementations of one or

more methods

5/22/2006 (c) 2001-6, University of Washington 22

Using Abstract Classes
• An abstract class is intended to be extended
• Extending classes can override abstract methods they inherit to

provide actual implementations
class HourlyEmployee extends Employee {

…
/** Return the pay of this Hourly Employee */
public double getPay() { return hoursWorked * payRate; }

}
• Instances of these extended classes can be created

• A class that extends an abstract class without overriding all
inherited abstract methods is itself abstract (and can be further
extended)

• A class that is not abstract is often called a concrete class

5/22/2006 (c) 2001-6, University of Washington 23

Interfaces vs Abstract Classes
• Both of these specify a type
• Interface

• Pure specification
• No method implementation (code), no instance variables, no

constructors
• Classes can implement as many interfaces as they want

• Abstract class
• Method specification plus, optionally:

Partial or full default method implementation
Instance variables
Constructors (called from subclasses using super)

• Which to use?
5/22/2006 (c) 2001-6, University of Washington 24

A Design Strategy
• These rules seem to provide a nice balance for

designing software that can evolve over time,
particularly in large systems:
• Any major type should be defined in an interface
• If it makes sense, provide a class that gives a default

implementation (either partial or complete)
• Client code can choose to either extend the default

implementation, overriding methods that need to be changed,
or implement the interface directly (the later is required if the
client class explicitly extends a different class)

• This pattern occurs frequently in the standard Java
libraries (see, e.g., List, AbstractList, ArrayList, et al)

