
CSE143 Wi05 21-1

5/17/2006 (c) 2001-6, University of Washington 21-1

CSE 143 Notes 5/17/06

Binary Search Trees

5/17/2006 (c) 2001-6, University of Washington 21-2

Cost of contains
• Review: in a binary tree, contains is O(N)
• Can we do better than O(N)?
• Turn to previous experience for inspiration...

• Why was binary search so much better than linear search?
• Can we apply the same idea to trees?

5/17/2006 (c) 2001-6, University of Washington 21-3

Binary Search Trees
• Idea: order the nodes in the tree so that, given that a

node contains a value v,
• All nodes in its left subtree contain values < v
• All nodes in its right subtree contain values > v

• A binary tree with these properties is called a binary
search tree (BST)

• Notes:
• Can also define a BST using >= and <= instead of >, <

This would allow duplicate values in the tree
• In Java, if the values are not primitive types, they must

implement comparable interface (i.e., provide compareTo)

5/17/2006 (c) 2001-6, University of Washington 21-4

Examples(?)
• Are these are binary search trees? Why or why not?

9

4

2 7

3 6 81

12

15

14

9

8

2 7

3 5 61

12

15

14

5/17/2006 (c) 2001-6, University of Washington 21-5

Implementing a Set with a BST
• Can exploit properties of BSTs to have fast, divide-and-

conquer implementations of add and contains
• e.g., a tree-based set – a collection of items
• A tree set can be represented by a pointer to the root node of a

binary search tree, or null if the set is empty
public class IntSet {

private TreeNode root; // root node, or null if empty
public IntSet() { root = null; }
// size() as for unordered binary tree
…

}

5/17/2006 (c) 2001-6, University of Washington 21-6

contains for a BST
• For a general binary tree, contains had to search both

subtrees
• Like linear search

• With BSTs, need only to search one subtree
• All small elements to the left, all large elements to the right
• Search either left or right subtree, based on comparison

between item and value at the root of the (sub-)tree
• Like binary search

CSE143 Wi05 21-2

5/17/2006 (c) 2001-6, University of Washington 21-7

Code for contains (in IntSet)
/** Return whether n is in this set */
public boolean contains(int n) {

return contains(root, n);
}
// Return whether n is in (sub-)tree with root r
private boolean contains(TreeNode r, int n) {

if (r == null) {
return ____________________ ;

} else {
if (n == r.data) { return _____________________ ; } // found it!
else if (n < r.data) { return ____________________________ ; } // search left
else /* n > r.data */ { return ____________________________ ; } // search right

}
}

5/17/2006 (c) 2001-6, University of Washington 21-8

Examples

9

4

2 7

3 6 81

12

15

14

contains(6)

root
9

4

2 7

3 6 81

12

15

14

contains(10)

root

5/17/2006 (c) 2001-6, University of Washington 21-9

Cost of BST contains
• Work done at each node:

• Number of nodes visited (depth of recursion):

• Total cost:

5/17/2006 (c) 2001-6, University of Washington 21-10

add
• Must preserve BST invariant: insert new element in

correct place in BST
• Two base cases

• Tree is empty: create new node which becomes the root of the
tree

• If node contains the value, found it; suppress duplicate add (for
sets; for other collections, can have a convention about how to
allow for duplicate values)

• Recursive case
• Compare value to current node’s value
• If value < current node's value, add to left subtree recursively
• Otherwise, add to right subtree recursively

5/17/2006 (c) 2001-6, University of Washington 21-11

Example
• Add 8, 10, 5, 1, 7, 11 to an initially empty BST, in that

order:

5/17/2006 (c) 2001-6, University of Washington 21-12

Example (2)
• What if we change the order in which the numbers are

added?
• Add 1, 5, 7, 8, 10, 11 to a BST, in that order (following the

algorithm):

CSE143 Wi05 21-3

5/17/2006 (c) 2001-6, University of Washington 21-13

Code for add (in IntSet)
/** Ensure that n is in the set. */
public void add(int n) {

root = add(root, n); // add n to tree if not present
}
/** Add n to tree rooted at r. Return (possibly new) tree containing n. */
private TreeNode add(TreeNode r, int n) {

}

5/17/2006 (c) 2001-6, University of Washington 21-14

Code for add
/** Add n to tree rooted at r. Return (possibly new) tree containing n. */
private TreeNode add(TreeNode r, int n) {

if (r == null) { // adding to empty tree
return new TreeNode(n, null, null);

}
if (n < r.data) { // add to left subtree

r.left = add(r.left, n);
} else if n > r.data) { // add to right subtree

r.right = add(r.right, n);
} // otherwise n == r.data, no change needed
return r; // return reference to this (possibly modified) tree to caller

}

5/17/2006 (c) 2001-6, University of Washington 21-15

Cost of add
• Cost at each node:

• How many recursive calls?
• Proportional to height of tree

• Best case?

• Worst case?

5/17/2006 (c) 2001-6, University of Washington 21-16

Analysis of Binary Search Tree Operations
• Cost of operations is proportional to height of tree
• Best case: tree is balanced

• Depth of all leaf nodes is roughly the same
• Height of a balanced tree with n nodes is ~log n

• If tree is unbalanced, height can be as bad as the
number of nodes in the tree
• Tree becomes just a linear list

5/17/2006 (c) 2001-6, University of Washington 21-17

Summary
• A binary search tree is a good general implementation of

a set, if the elements can be ordered
• Both contains and add benefit from divide-and-conquer

strategy
• No sliding needed for add
• Good properties depend on the tree being roughly balanced

• Not covered (or, why take a data structures course?)
• How are other operations implemented (e.g. iterator, remove)?
• How do you keep the tree balanced as items are added and

removed?

