
CSE143 Wi05 20-1

5/15/2006 (c) 2001-6, University of Washington 20-1

CSE 143 Notes 5/15/06

Trees

5/15/2006 (c) 2001-6, University of Washington 20-2

Overview
• Topics

• Trees: Definitions and terminology
• Binary trees
• Tree traversals
• Recursive tree algorithms

5/15/2006 (c) 2001-6, University of Washington 20-3

Trees
• Most of the structures we’ve looked at so far are linear

• Arrays
• Linked lists

• There are many examples of structures that are not
linear
• Organization charts
• Book contents (chapters, sections, paragraphs)
• Class inheritance diagrams

• Trees can be used to represent hierarchical structures

5/15/2006 (c) 2001-6, University of Washington 20-4

Looking Ahead To An Old Goal
• Finding algorithms and data structures for fast

searching
• Sorted arrays are faster than unsorted arrays, for searching

Can use binary search algorithm
Not so easy to keep the array in order

• LinkedLists were faster than arrays (or ArrayLists), for
insertion and removal operations

The extra flexibility of the "next" pointers avoided the cost of sliding
But... LinkedLists are hard to search, even if sorted

• Is there a way to get the best of both worlds?
• The answer will be...Yes: a particular type of tree

5/15/2006 (c) 2001-6, University of Washington 20-5

Drawing Trees
• For whatever reason, computer scientists usually draw

trees upside down with the root at the top

5/15/2006 (c) 2001-6, University of Washington 20-6

Tree Definitions (1)
• A tree is a collection of nodes connected by edges
• A node contains

• Data (e.g. an int, an Object, or whatever we want)
• References (edges) to two or more subtrees or children

• Equivalently: a tree is either
• An empty tree, or
• A root node with left and right subtrees

• Both definitions are recursive: the first focuses on the
implementation (nodes, edges), while the second is a bit more
abstract (trees & subtrees)
• We’ll look at trees both ways depending on the situation
• Often we will use this structure to help formulate algorithms and analysis

(recursive data recursive algorithms)

CSE143 Wi05 20-2

5/15/2006 (c) 2001-6, University of Washington 20-7

Tree Definitions (2)
• Trees are hierarchical

• A node is said to be the parent of its children (subtrees)
We can also speak of the collection of ancestors (parent, grandparent, …) and
descendants (children, grandchildren) of a node

• There is a single unique root node that has no parent
• Nodes with no children are called leaf nodes

Nodes with one or more children are often called interior nodes
• A tree with no nodes is said to be empty

5/15/2006 (c) 2001-6, University of Washington 20-8

Tree Terminology

c g

a

b j

k

fe h id l

m

leaves

nodes

root

edges

5/15/2006 (c) 2001-6, University of Washington 20-9

Subtrees
• A subtree in a tree is any node in the tree together with

all of its descendants (its children, and their children,
recursively)

a

b

c g

j

k m

5/15/2006 (c) 2001-6, University of Washington 20-10

Level and Height

c g

a

b j

k

fe h id l

m

leaves (not all at same level)

level 2
level 3

level 1

Definition: The root has level 1
Children have level 1 greater than their parent

Definition: The height is the highest level of any node in
a tree.

5/15/2006 (c) 2001-6, University of Washington 20-11

Binary Trees
• A binary tree is a tree each of whose nodes has no more

than two children
• The two children are called the left child and right child
• The subtrees rooted at those children are called the left subtree

and the right subtree

a

b

j f

e d hg

i

e

k

Left child Right child

5/15/2006 (c) 2001-6, University of Washington 20-12

Binary Tree Nodes
• A node for a binary tree holds some sort of data and

references to its subtrees
• For example, tree nodes to hold a integer values

class TreeNode {
public int data; // data item in this node
public TreeNode left; // left subtree, or null if none
public TreeNode right; // right subtree, or null if none
public TreeNode(int data, TreeNode left, TreeNode right) { … }

}

CSE143 Wi05 20-3

5/15/2006 (c) 2001-6, University of Washington 20-13

Binary Tree Implementation
• A collection that uses a tree as its underlying data

structure normally just needs a single instance variable
pointing to the root node, or null if the tree is empty

(The fact that a tree is the underlying data structure is usually a
private detail, just as the use of an array or linked list is private in a
list structure)

// collection of integers
public class IntCollection {

private TreeNode root; // root of tree, or null if empty
public IntCollection() { root = null; }
…

}

5/15/2006 (c) 2001-6, University of Washington 20-14

Tree Algorithms
• The definition of a tree is naturally recursive:

• A tree is either null (empty),
or data + left (sub-)tree + right (sub-)tree

• Base case(s)?
• Recursive case(s)?

• Given a recursively defined data structure, recursion is
often a very natural technique for algorithms on that
data structure
• Don’t fight it!

5/15/2006 (c) 2001-6, University of Washington 20-15

A Typical Tree Algorithm: nPositive()
public class IntCollection {

…
/** Return the number of positive (>0) ints stored in this tree */
public int nPositive() {

return nPositive(root);
}
// Return the number of nodes with positive ints in the (sub-)tree with root r
private int nPositive(TreeNode r) {

if (r == null) {
return _____________________ ;

} else {

}
}

5/15/2006 (c) 2001-6, University of Washington 20-16

Tree Traversal
• Functions like nPositive systematically “visit” each

node in a tree
• This is called a traversal
• We also used this word in connection with lists

• Traversal is a common pattern in many algorithms
• The processing done during the “visit” varies with the

algorithm
• What order should nodes be visited in?

• Many are possible
• Three have been singled out as particularly useful for binary

trees: preorder, postorder, and inorder

5/15/2006 (c) 2001-6, University of Washington 20-17

Traversals
• Preorder traversal:

• “Visit” the (current) node first
i.e., do whatever processing is to be done

• Then, (recursively) do preorder traversal on its children, left to right
• Postorder traversal:

• First, (recursively) do postorder traversals of children, left to right
• Visit the node itself last

• Inorder traversal:
• (Recursively) do inorder traversal of left child
• Then visit the (current) node
• Then (recursively) do inorder traversal of right child

5/15/2006 (c) 2001-6, University of Washington 20-18

Example of Tree Traversal

Preorder:
Inorder:
Postorder:

In what order are the nodes
visited, if we start the
process at the root?

9

5

2 7

4 6 81

12

17

l1

13

CSE143 Wi05 20-4

5/15/2006 (c) 2001-6, University of Washington 20-19

More Practice
What about this tree?

6

3

1 4

2 5

8

7

l3

10

11

12

Inorder:

Preorder:

Postorder:

5/15/2006 (c) 2001-6, University of Washington 20-20

New Algorithm: contains
• Return whether or not a value is in the tree

public class IntCollection {
…
/** Return whether n is in the tree */
public boolean contains(int n) {

return contains(root, n);
}
// Return whether n is in (sub-)tree with root r
private boolean contains(TreeNode r, int n) {

if (r == null) {
return __________________ ;

} else if (r.data == n) {
return __________________ ;

} else {
return ___ ;

}
}

5/15/2006 (c) 2001-6, University of Washington 20-21

Test
contains(d)

contains(c)

a

b

j f

e d hg

i

e

k

5/15/2006 (c) 2001-6, University of Washington 20-22

Cost of contains
• Work done at each node:

• Number of nodes visited:

• Total cost:

• Can we do better?

