
CSE143 Sp06 00-1

3/28/2006 (c) 2001-06 University of Washington 00-1

CSE 143
Computer Programming II

Welcome!
Course Overview and Administrivia

Pick up a syllabus as you come in

3/28/2006 (c) 2001-06 University of Washington 00-2

Outline for Today
• Course Overview
• Goals
• Administrative details
• Workload and grading
• Resources
• Background

This information is largely included in the syllabus
(handout), and is on the web – no need to transcribe
details

3/28/2006 (c) 2001-06 University of Washington 00-3

Introductions
• Instructor: Hal Perkins

cse143-instructor@cs.washington.edu, perkins@cs.washington.edu
Allen Center CSE 548, office hours Wed. after class + tba

• TA’s: Many
cse143-ta@cs.washington.edu (goes to all TAs and the instructor)

• Course administrator: Pim Lustig
cse143-admin@cs.washington.edu

• See Pim for logistical details about the course (enrollments,
conflicts, others)

• You!

3/28/2006 (c) 2001-06 University of Washington 00-4

Are You Ready?
• Course is a direct continuation of CSE 142
• Must have a firm grasp of programming basics

• including variables, expressions, statements (assignment,
conditionals, loops), methods, parameters, arrays

• Look at old CSE 142 web pages – you should be able to handle
those assignments and exams

• What if you took a different version of CSE 142? Or took
it elsewhere? Or didn’t use Java? Or a long time ago?
• Sit in on both for a few days if you want
• Try the first 143 assignment
• We'll help you switch to 142 if that's your decision

3/28/2006 (c) 2001-06 University of Washington 00-5

Course Overview
• Basics of data structures and algorithms (“abstract data types”)
• Key data structures: stacks, queues, linked lists, binary trees,

dictionaries, maps, hashing
• Mixture of implementation and using/studying off-the-shelf components,

particularly classes in the Java Collection Framework
• Programming topics: encapsulation, interfaces, inheritance,

recursion, divide-and-conquer, other algorithm design techniques
• Basic complexity theory – comparing algorithms, performance

tradeoffs, etc.
• Good software design and effective use of Java

3/28/2006 (c) 2001-06 University of Washington 00-6

Is This a Java Programming Course or Not?
• This is a programming course

• The key goal is learning to program well, not just getting stuff to run
Good design, good organization, good style
Good algorithms, meaningful efficiency

• This is not a programming course
• Lots of Java features won't be covered

See Java reference books & JavaDoc for details about the Java language & libraries
We cover the essential parts of Java that support good programming

• We will cover important computer science topics that are not Java-specific
Some related to programming, but broader than Java
Data structures, algorithms, complexity analysis, …

• Fact: writing programs that work perfectly isn’t enough to get a
perfect grade (!)

CSE143 Sp06 00-2

3/28/2006 (c) 2001-06 University of Washington 00-7

My Goals for You
• 4 things you should be able to do after CSE143

• Be able to design and implement abstractions (interfaces and
classes) using modern programming language features and
techniques

• Be able to test and systematically locate and remove errors
• Be able to evaluate tradeoffs between different

implementations of an abstraction and pick suitable ones
• Be able to learn and use new libraries using standard

documentation (no training wheels)

3/28/2006 (c) 2001-06 University of Washington 00-8

My Expectations for You
• Responsibility

• Keep up, know what’s happening
• Meet deadlines, budget your time, make backups
• Take responsibility for your own code and debugging

• Respect
• For others in the class (people sitting around you in lecture,

members of your discussion section, …)
• For the course staff
• For yourself

3/28/2006 (c) 2001-06 University of Washington 00-9

My Goals For Myself
• Be an advocate for your learning (credit to Prof. Mary Pat Wenderoth

for this notion)

• Help all of you learn
• Keep the course on track
• Make the homework projects interesting
• Make lectures and sections events you look forward to!

• Keep in touch with what’s happening
• Office hours – please drop by if just to chat

(you’re not being sent to the Principle’s office!)
• Participate in online discussions and other forums, use

informal evaluations, etc.

3/28/2006 (c) 2001-06 University of Washington 00-10

Course Organization
• 3 lectures per week (MWF, 2:30)
• Discussion sections twice per week (various times,T/Th)

• Exercises, review, discussions, etc.
• Regular (weekly) programming assignments

• Generally due electronically Thursday nights
• Tests

• Midterm: Monday, May 8 in class
• Final: Tuesday, June 6, 2:30-4:20 pm

3/28/2006 (c) 2001-06 University of Washington 00-11

Late Policy

No Late assignments

• Why?
• Allows us to review and discuss assignments once they’re due
• Allows timely feedback and grading
• Helps keep everyone on schedule during a fast-paced quarter

• If circumstances that are truly beyond your control
prevent on-time work, contact the instructor
• If it involves an exam, contact the instructor before the exam

(at least via email or a phone call)

3/28/2006 (c) 2001-06 University of Washington 00-12

Grading
• Grade calculation

• 40% homework assignments (typically 20 pts. per assignment)
• 20% midterm exam
• 40% final exam

• These scores are combined to get an overall score
between 0-100. Final grades are computed as follows:
• 90% at least 3.5
• 80% at least 2.5
• 70% at least 1.5
• 60% at least 0.7

CSE143 Sp06 00-3

3/28/2006 (c) 2001-06 University of Washington 00-13

Academic (Mis)conduct
• Goal: balance the following

• Learning: each student must do the work to learn effectively
• Cooperation: people learn best when they can learn with others
• Fairness and honesty: Nobody should ever represent the work

of someone else as their own or try to claim credit for it

3/28/2006 (c) 2001-06 University of Washington 00-14

Academic (Mis)conduct
• Policy

• You must do assignments by yourself (unless explicitly stated otherwise in
an assignment)

• You may discuss general approaches and ideas with others, but
• You may not ever give code to or receive code from others
• You may not have another person “walk you through” how to solve an

assignment
• We check this and act when trouble is discovered

• Either informally or through the vice-provost’s office
• Use your common sense and ask first if unclear

• Rule of thumb: any activity you engage in for the purpose of earning credit
while avoiding learning, or to help others do so, is likely to be an act of
academic misconduct (from CSE dept. policy – see link on the web)

3/28/2006 (c) 2001-06 University of Washington 00-15

Resources
• Handouts, slides, and notes

• Alert! Not all material is on the handouts!
(There is at least some reason to attend class and take notes)

• Handouts will generally be distributed in lectures and sections
and will be available on the course web

• Additional notes will be posted on the web
• No formal textbook
• All e-mail announcements, assignment descriptions, etc.

should be considered required reading.

3/28/2006 (c) 2001-06 University of Washington 00-16

Communicating Electronically
Course web site

• www.cs.washington.edu/143/
• Discussion Board: linked from Web site

• UWNetID required
• Open discussion – please contribute!
• Course staff monitors and contributes as needed

• Email to us for things not appropriate for public discussion
• Addresses on the web
• Email works better for some things than other (e.g., very bad for trying to

debug code)
• E-mail from us: cse143-announce

• Sent directly to your UWNetID account
• We’ll try to keep the spam to a minimum, but … you must read and heed

what we do send!

3/28/2006 (c) 2001-06 University of Washington 00-17

Computing Facilities
• Introductory Programming Lab (IPL)

• Mary Gates Hall 334
• CSE 143 (& CSE 142) TAs available in the lab

Hours posted on the web

• Other campus labs
• Computing at home
• Even if you plan to compute at home, learn your way

around the UW labs

3/28/2006 (c) 2001-06 University of Washington 00-18

Java!
• Java version: Java 5 (SDK 1.5)

• Sun version for Windows/Linux
• Latest Apple version on Mac OS X 10.4 (Tiger)

• You’ll want a programming editor or environment to use
on top of the basic Java system
• Suggestions: TextPad, DrJava, or (for the more adventurous)

Eclipse
We’re not particularly religious about which one you use, but your code must be
standard Java and not rely on “wizards” or other non-trivial code generated by
the programming environment

• Details: Computing at Home page on course web

