
CSE 143 Final Exam June 6, 2006 Page 1 of 11

Name __________________________________ Section ________________

Please do not turn the page until everyone is ready and you are told to proceed.

Rules:

• The exam is open-book, open-notes, but no calculators, computers, cell phones,
PDAs, or other devices.

• Please stop promptly at 4:20.
• There are a total of 100 points, distributed unevenly among the questions
• Please try to write neatly – style matters, but we’ll take into account that this is a

short exam and it’s not always possible to have the time to revise and clean up
everything.

Advice:

• Read questions carefully and understand what’s asked before you start writing.
• Leave evidence of thoughts and intermediate steps so you can get partial credit.
• Skip around – if you get hung up on a question, try the next one and come back.
• If you have questions, ask – raise your hand and someone will try to help you out.

Please stay in your seat.
• Relax. You are here to learn.

Q1 _______________ / 12

Q2 _______________ / 15

Q3 _______________ / 15

Q4 _______________ / 15

Q5 _______________ / 15

Q6 _______________ / 8

Q7 _______________ / 20

total _______________ / 100

CSE 143 Final Exam June 6, 2006 Page 2 of 11

Question 1. (12 points) Binary trees. A newspaper reporter is trying to solve the
mystery of the DeMorgan Code and has run into a clue that could benefit from your
computer science expertise. The clue is that a particular set of words, when arranged in a
binary tree, says something useful about the mystery. Unfortunately, the tree is not
available, but the reporter has two lists of the words from the tree, one list showing an
inorder traversal of the tree, and the other a postorder traversal.

Your job is to draw a picture of the one binary tree that contains these words in its nodes
and whose traversals yield the words in the following orders:

 Inorder: top magic the boolean code logic secret is

 Postorder: magic top boolean logic code is secret the

Every node, both leaves and interior (non-leaf) nodes, contains one word. Draw a picture
of the tree below:

CSE 143 Final Exam June 6, 2006 Page 3 of 11

Question 2. (15 points) Linked lists. Suppose that we have a list class containing a
sorted list of strings that uses a linked list to hold the data. The individual links are
represented by instances of the following class:

 /** links in a list of strings */
 public class StringNode {
 public String s; // string referred to by this link
 public StringNode next; // next link in list; null if none
 }

The sorted string list itself has a single instance variable, which is a reference to the first
link in the list, or null if the list is empty.

 /** a sorted list of strings */
 public class SortedStringList {
 private StringNode front; // first link or null if empty
 }

Your job is to complete the definition of method removeDups in SortedStringList
so that it removes all but one occurrence of any string that appears more than once in the
(sorted) list. For example, if the list initially contains the strings apple apple banana
cherry cherry potato potato potato tomato, then, after removeDups is
executed, the list should contain apple banana cherry potato tomato. For full
credit, your answer must run in linear (O(n)) time, may not define any new instance
variables or other methods, and may not use any other collection data structures like lists,
queues, or stacks.

 /** remove duplicate occurrences of words from this list */
 public void removeDups() {

 }

CSE 143 Final Exam June 6, 2006 Page 4 of 11

Question 3. (15 points) It is often useful when debugging or monitoring a program to
have it print messages as it runs. For this question we want to create an extended version
of the queue class used in assignment 4 so that it prints messages on System.out
whenever an item is added to or removed from a queue. The messages should show the
item added or removed and the resulting queue size.

The queue is specified by the following interface. (The difference from assignment 4 is
that this is a simple queue of String values, not a generic class that has a parameter <E>
for the type of the items in the queue.)

 public interface StringQueue {
 // post: given value inserted at the end of the queue
 public void enqueue(String value);

 // pre : !isEmpty()
 // post: remove and return the value at the front
 // of the queue
 public String dequeue();

 // post: return true if the queue is empty, false otherwise
 public boolean isEmpty();

 // post: return the current number of elements in the queue
 public int size();
 }

Your job is to write a new class LoggingStringQueue that extends the class
LinkedStringQueue that implements this interface. The enqueue and dequeue
methods in the extended class should print messages to System.out as in the following
example. If we execute the following operations:

 LoggingStringQueue q = new LoggingStringQueue();
 q.enqueue(“cheese”);
 q.enqueue(“grapes”);
 String ignore = q.dequeue();
 q.enqueue(“chocolate”);

then the following messages should be printed on System.out:

 cheese enqueued, size is 1
 grapes enqueued, size is 2
 cheese dequeued, size is 1
 chocolate enqueued, size is 2

For full credit, your LoggingStringQueue class must use the appropriate operations
of LinkedStringQueue to actually manipulate the queue. Write your answer on the
next page. You may remove this page for reference.

CSE 143 Final Exam June 6, 2006 Page 5 of 11

Question 3. (cont.) The class you are to extend is the following:

 class LinkedStringQueue implements StringQueue {
 // implementation omitted
 ...
 }

Below, write your definition of class LoggingStringQueue that extends
LinkedStringQueue as described on the previous page.

CSE 143 Final Exam June 6, 2006 Page 6 of 11

Question 4. (15 points) Gardening. Early summer is a time for trees to grow. For this
problem, we want to “grow” a binary tree by changing every leaf node into an interior
(branching) node that has two new leaf nodes as children. Each node has an instance
variable that has type Color. In an existing leaf node, the value of this instance variable
can be either Color.GREEN or Color.BROWN; in an interior node, its value is always
Color.BROWN. In a new leaf node, the color is always Color.GREEN. For example,
here is a tree before and after a “grow” operation has been performed.

 B B
 / \ / \
 / \ / \
 B B B B
 / / \ /
 G G G B
 / \
 G G

In other words, each leaf node becomes an interior node whose color is changed to
Color.BROWN (if it wasn’t already that color) and has as its children two new leaf nodes
containing Color.GREEN.

A node is represented by instances of the following class:

 public class TreeNode {
 public Color color; // color of this node
 public TreeNode left; // left child; null if none
 public TreeNode right; // right child; null if none

 // constructor
 public TreeNode(Color c, TreeNode left, TreeNode right) ...
 }

Complete the definition of procedure grow, on the next page, so it grows a tree as
described above. For full credit you must use recursion to traverse the tree, and you may
not define any global (instance) variables, or structured variables like lists, queues,
stacks, or so forth. You may define additional helper (auxiliary) methods if they are
useful.

(Note: It doesn’t matter exactly how type Color is represented or what it is. All you
need to know is that Color.GREEN and Color.BROWN are constants of type Color and
can be stored in variables that have that type. If you need to, you can use == and != to
compare values of type Color.)

CSE 143 Final Exam June 6, 2006 Page 7 of 11

Question 4. (cont.) Write your solution below.

 /** Grow the tree starting at node t by changing each leaf
 * node so its color is brown and so it has two new child
 * leaf nodes that are colored green */
 public void grow(TreeNode t) {

 }

CSE 143 Final Exam June 6, 2006 Page 8 of 11

Question 5. (15 points) Fractions. In this problem we want to implement part of a class
used to represent fractions (just like in grade school – numbers like 1/2, 5/16, -7/32, etc.).
A fraction is represented by two integer instance variables for the numerator and
denominator. The denominator will always be positive, i.e., the representation of -(5/3)
has a numerator of -5 and a denominator of 3, not 5 and -3. However fractions are not
necessarily stored in lowest terms. All of the numbers 1/2, 3/6, 1024/2048, and so forth
are possible representations for 1/2 and all are considered to be equal.

For this problem, implement a proper compareTo method for class Fraction that
returns a negative, zero, or positive integer value depending on the result of the
comparison between the two fraction values. Write your solution below.

 public class Fraction implements Comparable<Fraction> {
 // instance variables
 private int num; // fraction numerator
 private int denom; // fraction denominator, always
 // positive (i.e., >0)

 // write your compareTo method for class Fraction here

 }

CSE 143 Final Exam June 6, 2006 Page 9 of 11

Question 6. (8 points) Complexity. Answer only one of the following two questions.
Either leave the other question blank, or cross out the other question so it is clear which
one you want us to grade. If you answer both, we will grade the first one and ignore the
second. Whichever one you pick, keep your answer brief and to the point, but be sure to
include enough detail so it is clear that you understand the technical issues involved, as
opposed to giving a general, fuzzy answer that is not specific.

Version 1. Under good conditions, the lookup, insert, and delete operations in a hash
table take O(1) time. However, the time needed can be significantly worse, up to O(n).
Explain why the worst-case time can be as bad as O(n) and what is needed to ensure that
the operations only require the expected time of O(1).

Version 2. Under good conditions, quicksort requires O(n log n) time to sort an array
containing n items. However, the time needed can be significantly worse, up to O(n2).
Explain why the worst-case time can be as bad as O(n2) and what is needed to ensure that
the sort only requires the expected time of O(n log n).

CSE 143 Final Exam June 6, 2006 Page 10 of 11

Question 7. (20 points) Magic secret decoder. In this problem we want to write a
method that decodes characters that are encoded as a sequence of “0”s and “1”s. As in
the Huffman code assignment, the main data structure is a tree whose leaves contain
individual characters. The codes for the characters are described by the arrangement of
nodes in the tree and the paths from the root to the leaf nodes. For example, one possible
tree is the following:

In this tree, the code for ‘e’ is “0”, the code for ‘r’ is “10”, and so forth.

We will represent nodes of this tree as follows.

 public class CodeNode {
 char ch; // char value if leaf; value is not
 // specified or defined if not a leaf
 CodeNode left; // left (0) subtree, or null if none
 CodeNode right; // right (1) subtree, or null if none
 }

Your job is to implement method decode on the next page. The input is a string of “0”s
and “1”s and the root of the tree. The result of decode should be the integer code of the
character if the input string defines a character in the tree. However, if the input does not
give the code of a character in the tree, the result should be -1. For example (using the
above tree):

 Input string Result of decode
 “0” 101 (ASCII code for ‘e’)
 “1101” 119 (ASCII code for ‘w’)
 “101” -1 (no such character)
 “110” -1 (incomplete code)

You may assume that the input string consists only of “0”s and “1”s, but you may not
assume that it is the code for any specific character in the tree. You may also assume that
the initial string to be decoded has at least one character in it (“0” or “1”).

e

r

n w

z

0

0

0

0

1

1

1

1

CSE 143 Final Exam June 6, 2006 Page 11 of 11

Question 7. (cont.) Complete the definition of method decode below. You may use
either iteration or recursion to solve the problem, and you may define additional helper
methods if you find them useful. For full credit, you may not define any instance
(global) variables, or any variables holding collections of data like lists, queues, stacks,
trees, and so forth.

 /* Return the integer value of the ASCII character described
 * by the code c, given the code tree starting at node t. If
 * c does not describe a complete code in tree t, return -1.
 */
 public int decode(String c, CodeNode t) {

 }

