
CSE143 Au03 06-1

2/2/2004 (c) 2001-3, University of Washington 06-1

CSE 143 Java

Introduction to Graphical Interfaces in Java:
AWT and Swing

Reading: Sec. 19.1-19.3, 19.5

2/2/2004 (c) 2001-3, University of Washington 06-2

Overview
• Roadmap

• Today: introduction to Java Windows and graphical output
• Future: event-driven programs and user interaction

• Topics
• A bit of history: AWT and Swing
• Some basic Swing components: JFrame and JPanel
• Java graphics

• Reading:
• Textbook: Ch. 19
• Online: Sun Java Swing tutorial (particularly good for picking up details of

particular parts of Swing/AWT as needed); Swing API javadoc web pages
http://java.sun.com/docs/books/tutorial/uiswing/index.html

2/2/2004 (c) 2001-3, University of Washington 06-3

Graphical User Interfaces
• GUIs are a hallmark of modern software
• Hardly existed outside research labs until Mac's came along

• Picked up by PC's later
• User sees and interacts with “controls” or “components”

(sometimes called “widgets”)
• menus
• scrollbars
• text boxes
• check boxes
• buttons
• radio button groups
• graphics panels
• etc. etc.

2/2/2004 (c) 2001-3, University of Washington 06-4

Opposing Styles of Interaction
• “Algorithm-Driven”

• When program needs
information from user, it
asks for it

• Program is in control
• Typical in non-GUI

environments (examples:
payroll, batch simulations)

• “Event Driven”
• When user wants to do something,

he/she signals to the program
Moves or clicks mouse, types, etc.

• These signals come to the program as
“events”

• Program is interrupted to deal with the
events

• User has more control
• Typical in GUI environments

CSE143 Au03 06-2

2/2/2004 (c) 2001-3, University of Washington 06-5

A Bit of Java History
• Java 1.0: AWT (Abstract Windowing Toolkit)
• Java 1.1: AWT with new event handling model
• Java 1.2 (aka Java 2): Swing

• Greatly enhanced user interface toolkit built on top of AWT
• Same basic event handling model as in Java 1.1 AWT

• Java 1.3, 1.4
• Bug fixes and significant performance improvements; no major

revolution
• Naming

• Most Swing components start with J.
• No such standard for AWT components

2/2/2004 (c) 2001-3, University of Washington 06-6

Bit o' Advice
• Use Swing whenever you can
• Use AWT whenever you have to

(mostly to support older windows browsers
that don’t have the current Sun Java plugin)

2/2/2004 (c) 2001-3, University of Washington 06-7

Components & Containers
• Every GUI-related component

descends from Component, which
contains dozens of basic methods
and fields common to all
AWT/Swing component

• "Atomic" components: labels, text
fields, buttons, check boxes, icons,
menu items, …

• Some components are Containers
– components like panels that can
contain other nested
subcomponents

Component

Container Lots
of AW componjents

JComponent various AWT containers

JPanel JFileChooser tons
of J components

2/2/2004 (c) 2001-3, University of Washington 06-8

Types of Containers
• Top-level containers: JFrame,JDialog, JApplet

• Often correspond to OS Windows
• Mid-level containers: panels, scroll panes, tool bars, …

• can contain certain other components
• JPanel is best for general use
• An Applet is a special kind of container

• Specialized containers: menus, list boxes, combo
boxes...

• Technically, all J components are containers

CSE143 Au03 06-3

2/2/2004 (c) 2001-3, University of Washington 06-9

JFrame – A Top-Level Window
• Top-level application window

JFrame win = new JFrame(“Optional Window Title”);

• Some common methods
setSize(int width, int height); // frame width and height
setBackground(Color c); // background color
show(); //make visible (for the first time)
repaint(); // request repaint after content change
setPreferredSize(Dimension d); // default size for window; also can set min

// and max sizes
dispose(); // get rid of the window when done

2/2/2004 (c) 2001-3, University of Washington 06-10

JPanel – A General Purpose Container
• Commonly added to a window to provide a space for

graphics, or collections of buttons, labels, etc.
• JPanels can be nested to any depth
• Many methods in common with JFrame (since both are

ultimately instances of Component)
setSize(int width, int height);
setBackground(Color c);
setPreferredSize(Dimension d);

• Bit o' advice: Can't find the method you're looking for?
Check the superclass.

2/2/2004 (c) 2001-3, University of Washington 06-11

Adding Components to Containers
• Swing containers have a “content pane” that manages

the components in that container
[Differs from original AWT containers, which managed their components directly]

• To add a component to a container, get the content
pane, and use its add method

JFrame jf = new JFrame();
JPanel panel = new JPanel();
jf.getContentPane().add(panel);

or
Container cp = jf.getContentPane();
cp.add(panel);

2/2/2004 (c) 2001-3, University of Washington 06-12

Non-Component Classes
• Not all classes are GUI components
• AWT

• Color, Dimension, Font, layout managers
• Shape and subclasses like Rectangle, Point, etc.
• Graphics

• Swing
• Borders
• Further geometric classes
• Graphics2D

• Neither AWT nor Swing
• Images, Icons

CSE143 Au03 06-4

2/2/2004 (c) 2001-3, University of Washington 06-13

Layout Managers
• What happens if we add several components to a

container?
• What are their relative positions?

• Answer: each container has a layout manager. Some
kinds:
• FlowLayout (left to right, top to bottom)
• BorderLayout(“center”, “north”, “south”, “east”, “west”)
• GridLayout (2-D grid)
• GridBagLayout (makes HTML tables look simple); others

• Default LayoutManager for JFrame is BorderLayout
• Default for JPanel is FlowLayout

2/2/2004 (c) 2001-3, University of Washington 06-14

pack and validate
• Container state is “valid” or “invalid” depending on whether

layout manager has arranged components since last change
• When a container is altered, either by adding components or

changes to components (resized, contents change, etc.), the
layout needs to be updated (i.e., the container state needs to be
set to valid)
• Swing does this automatically more often than AWT, but not always

• Common methods after changing layout
• validate() – redo the layout to take into account new or changed

components
• pack() – redo the layout using the preferred size of each component

2/2/2004 (c) 2001-3, University of Washington 06-15

Layout Example
• Create a JFrame with a button at the bottom and a panel

in the center
JFrame frame = new JFrame(“Trivial Window”); //default layout: Border
JPanel panel = new JPanel();
JLabel label = new JLabel(“Smile!”);
label.setHorizontalAlighment(SwingConstants.CENTER);
Container cp = frame.getContentPane();
cp.add(panel, BorderLayout.CENTER);
cp.add(label, BorderLayout.SOUTH);

2/2/2004 (c) 2001-3, University of Washington 06-16

Graphics and Drawing
• Simple things like labels have suitable default code to paint

themselves
• For more complex graphics, extend a suitable class and override

the (empty) inherited method paintcomponent to draws its
contents
• (Different from AWT, where you overrode paint – don’t do that in swing!)

public class Drawing extends JPanel {
...

/** Repaint this Drawing whenever requested by the system */
public void paintComponent(Graphics g) {

super.paintComponent(g);
g.setColor(Color.green);
g.drawOval(40,30,100,100);
g.setColor(Color.red);
g.fillRect(60, 50, 60, 60);

}

CSE143 Au03 06-5

2/2/2004 (c) 2001-3, University of Washington 06-17

paintComponent
• Method paintComponent is called by the underlying

system whenever it needs the window to be repainted
• Triggered by window being move, resized, uncovered,

expanded from icon, etc.
• Can happen anytime – you don’t control when

• If your code does something that requires repainting,
call method repaint()
• Requests that paintComponent be called sometime in the

future, when convenient for underlying system window
manager

2/2/2004 (c) 2001-3, University of Washington 06-18

Painter's Rules
• Always override paintComponent() of any component you will be

drawing on
• Not necessary if you make simple changes, like changing background color,

title, etc. that don't require a graphics object
• Always call super.paintComponent(g) to paint the background
• Never call paint() or paintComponent(). Never means never!

• This is a hard rule to understand. Follow it anyway.
• Always paint the entire picture, from scratch
• Don't create a Graphics object to draw with

• only use the one given to you as a parameter of paintComponent()
• and, don't save that object to reuse later!
• This rule is bent in advanced graphics applications

2/2/2004 (c) 2001-3, University of Washington 06-19

What Happens If You Don't Follow The Rules...

2/2/2004 (c) 2001-3, University of Washington 06-20

Classes Graphics and Graphics2D
• The parameter to paintComponent or paint is a graphics

context where the drawing should be done
• In Swing components, the parameter has static type Graphics,

but dynamic type Graphics2D, a subclass of Graphics
Cast it to Graphics2D if you want to use the newer, more sophisticated graphics
operations

• More procedural-like interface than uwcse.GWindow (if
you’ve used that)
• Call Graphics methods to draw on the Graphics object

[instead of creating new shape objects and adding them to the window]

CSE143 Au03 06-6

2/2/2004 (c) 2001-3, University of Washington 06-21

Graphics 2D
• In the Graphics 2D package, many graphical objects

implement the Shape interface
• When possible, chose a Shape rather than a non-Shape

• Lots of methods available to draw various kinds of
outline and solid shapes and control colors and fonts

2/2/2004 (c) 2001-3, University of Washington 06-22

Learning Graphics2D
• In reading and experimenting, focus on these classes:

• JPanel (and ancestors)
• (interface) Shape
• Line2D
• Polygon
• Graphics2D, especially these methods:

draw(Shape)
draw(String, int, int)
fill(Shape)
setColor(Color)
Avoid methods like drawLine, drawPolygon, etc.

• (But you can use the older AWT graphics if you want)

2/2/2004 (c) 2001-3, University of Washington 06-23

Roadmap
• Future: Events

• User interaction
• GUI components

• What to do
• Start reading textbook chs. 19 and 20
• Browse the Swing tutorial and Java Swing/AWT documentation

from Sun to start to feel your way around

