
Programming Mechanisms That

Can Solve Design Problems

Week 2

Common Design Challenges
• How can I define a set of behaviors along with their

implementation?

• How can I define a general set of behaviors without
worrying about their implementation?

• How can I (re)implement a set of new/old behaviors while
taking advantage of existing behaviors
– Need compatibility with existing code

• how can I define a new set of behaviors without turning the whole
world upside down?

• How can I implement a broad set of behaviors without
being responsible for defining the behaviors themselves.
– Also, how can I define a class and its behaviors without

implementing all of them myself?

• How can “bundle” up my services and make them
available to other programs?

How can I define a set of behaviors

along with their implementation?

class Complete {

int x;

Complete() { x = 100; }

Value() { return x; }

}

Define a class.

How can I define a general set of

behaviors without worrying about their

implementation?

• Use an interface

Definition:!An interface is a named
collection of method definitions

(without implementations). An

interface can also declare constants

“what is

must do,

but not

how it does

it!”

How can I implement a broad set of behaviors

without being responsible for defining the

behaviors themselves.

• Use “implements” with
interface.

class PalmOrganizer implements StockWatcher

PalmOrganizer() {…}

void valueChanged(String tickerSymbol,

 double newValue) {

PDA.beepBeep(tickerSymbol); }

void updateCalendar() {…} // other cool methods

}

Interface Properties

• An interface name defines a new reference

data type.

• You can use interface names anywhere you

can use any other data type name.

• Only an instance of a class that implements

the interface can be assigned to a reference

variable whose type is an interface name.

StockWatcher sw = new StockWatcher(); // legal??

Stack Example

• Interface Stack
– LIFO structure.

• Implementation FixedStack
– Fixed stack

– Simple, but limited

• Implementation DynamicStack
– Dynamic allocation.

– Unlimited, but more complicated

– Two “tricks”

• Note javadoc behavior!

The trouble with Interfaces

• Over time, systems change.
– Suppose we want to allow stack clients to query the

state of the stack?
• isEmpty()? isFull()?, etc…

• If you change your interface specification, then all
implementing code must change.

• Two issues
– Who implements?

– What should the implementations do in light of the
change?

• Consider: public boolean isEmpty()

• Lots of busy work (typing)

– $$

How can I implement a new set of

new/old behaviors while taking

advantage of existing behaviors

– While maintaining compatibility with existing clients

– Or, how can I define a new set of behaviors without turning the

whole world upside down?

• Solution: Inheritance

– Definition:! A subclass is a class that extends

another class. A subclass inherits state and

behavior from all of its ancestors. The term

"superclass" refers to a class's direct ancestor as

well as to all of its ascendant classes

What does Inheritance

Allow/Deny?
• A subclass inherits variables and methods from its superclass and all of

its ancestors. The subclass can use these members as is, or it can hide

the member variables or override the methods.
– A subclass cannot override methods that are declared final in the superclass (by

definition, final methods cannot be overridden).

• If you attempt to override a final method, the compiler displays an error message similar to the
following and refuses to compile the program.

class ancestor {

 public void bar() { … }

final public void foo();

}

class descendant extends ancestor {

 public void bar() {…} // ok? Yes or no?

public void foo() {…} // ok?? Yes or no?

}

Stack Example. Redux.

• Use inheritance, not interface.

• Base class implements “some kind of stack”

– How it works? We don’t care.

• Subclasses take care of richer services as

necessary.

– Eg. How many were pushed, popped, etc.

Something really fancy?

• How would we define yet a new class that

also counts the number of items that have

been popped?

• And then, an even better one that tells us if

pushes == pops?

