Important Stuff to Know As you
Get Started

CSE 143
Winter 03
Brian Bershad

Office Hours: M 12.30:1.30, W:
12.30-1.30

Administration

Course Goals

e By the end of this course, there will be
— No Java code you can't read.
— Little code you can't modify.
— Some code you can't extend.

— Probably a lot of code you can't write.

A Simple Plan

Watch me write a lot of code.
Read a lot of code.

Write a lot of code.

Extend a lot of code.

Write about a lot of code.

Understand the point of every lectures

What You Should Know Now

* Essential Java Programming
— Fundamental programming paradigms
¢ For, while, conditional, objects, drivers, etc...
— Classes
¢ Definitions
— public/private
— Methods
— Constructors
— instance variables
¢ Inheritance
— Subtypes
¢ Interfaces

— input/output, uwcse graphics library, common java classes
* Putting it into practice
— writing small programs from scratch, (some of you) modifying
moderate size programs

— Compiling, running, etc

Roadmap

Part 1: Relationships
— Classes, Interfaces, Packages, Handling Errors

Part 2: Advanced Program Structuring Techniques

— GUI, Common Class Paradigms, Powerful data
structures

Part 3: Algorithms and Data Structures
— Big O, lists, stacks, recursion, trees, sorting,...
Part 4: Parsing

Course Organization

e 3 lectures per week (MWF)

* Quiz section twice per week (T & Th)
— Exercises, review, discussions, etc.

* Frequent quizzes

— To keep you up with the reading and
assignment instructions

— To test mastery of current material
— To provide TAs and me with feedback

Assignments

* Typically (but not always!) due Wed. night 9pm
(electronic) and/or in sections or lecture Thursday
or Friday morning (written)

* Primarily fairly substantial programming projects
with written reports

* Maybe some shorter problems and programming
drills

* Assignments will more complex than in CSE142
*Assignment directions, too!

* No late assignments accepted

*But be sure to talk with your TA about problems truly beyond your
control like illness or family emergency so we know what happened.

i)

%3}

Academic (Mis)conducér\

e Goal: balance the following

— Learning: each student must do the work to
learn effectively

— Cooperation: people learn best when they can
cooperate with others

— Fairness and honesty: Nobody should ever
represent the work of someone else as their
own or try to claim credit for it

e Tolerance: Zero.

w9

Academic (Mis)conducér\

* Policy
—You must do assignments by yourself or with your

assigned partner (unless explicitly stated otherwise in an
assignment)

—You may discuss general approaches and ideas with
others, but

—You may not ever give code to or receive code from
others

*We check this and act when trouble is discovered

* Use your common sense and ask first if unclear

—Rule of thumb: any activity you engage in for the purpose
of earning credit while avoiding learning, or to help
others do so, is likely to be an act of academic misconduct
(from CSE dept. policy — see link on the web)

Exams & Quizzes

e Exams
— 2 midterm exams in class; Dates TBD.

— Final exam: Time set by the university, location tba

* The exams will not be given on any other days.
Don’t make plans which would take you away!

e Format: mixture of short answer, short essay,
multiple choice, programming

Grading

* Grade distribution (subject to change)
— 30% homework assignments and projects
— 15% + 15% midterm exams
— 25% final exam
— 10% quizzes
— 5% participation and service

e (lass is curved

— Median of final course grades is around 3.0
* Maybe a bit higher when there are a lot of drops

Grading

e Assignment and quiz grading will be very coarse

e No partial points

* Typical scale: 4, 3, 2, 1, O for assignments and written
reports

— Occasionally may use 0..1 or 0..2, etc.

— Mastery Il Good Job! Il On the Right Track Il Honest Effort, but... Il
Really, Now!

— Separate scores for Operation/Practice
i.e., Yes! Style, clarity, readability matters

— Written reports count as much as the actual code (being able to
communicate what you do is a crucial skill)

* Quiz question grading: usually right or wrong

Resources to Help You Succeed

e Course staff
— Your TA is your primary contact, but please feel free to
talk to any of us
* Especially: don't leave me lonely in office hours!
— I’'ll try to be available right after class on Monday and
Wednesday for as long as there are questions

* but before class, it's panic time. Please forgive me in advance
if I'm grouchy then.

— Consultants in the IPL
¢ A limited resource!

— CLUE — MGH evening learning center

* CSE143 will have a presence; still working out the details

More Resources

Help each other! Form study groups, spend
time on the discussion list, etc.

Undergraduate advisors, for general

questions about the CSE programs (Sieg
114)

College of Engineering has some special
resources for women and minorities

Other university resources

For Reading and Study

e [ecture slides and course notes
— Alert! Not all lecture material is on the slides!

— Slides used will be posted on the web
e NOT distributed in lecture

e Textbook: Next slide

e Other Material
— Possibly handouts

— All e-mail announcements, assignment descriptions, etc.
should be considered required reading. They could
even be tested on!

Textbooks

» Textbooks is a reference, not a roadmap.

e Textbook: Nino & Hosch, An Introduction to

Programming and Object-Oriented Design using
Java, Wiley, 2002

— Alert! We may not follow the book very closely!

— There will be reading assignments from this book.
* If you choose not to buy it, be sure you have access to a copy

— Covers material from both CSE142 & CSE143 — good
review source

— Will not always match our way of doing things, or our
order!

Communicating Electronically

Course web site
—www.cs.washington.edu/143/
* Discussion Board: will be linked from Web site
— UWNetID required
—Open discussion — please contribute!
— Course staff monitors and contributes as needed
e Email to us
— Addresses on the web

—Email works better for some things than other (e.g., very bad for
trying to debug code)

* Anonymous Feedback Page
* E-mail from us

— Sent directly to your UWNetID account
—You are responsible for reading our postings.

Computing Facilities

* Introductory Programming Lab (IPL)
—Mary Gates Hall 334
—CSE 143 consulting staff in IPL

*Hours posted on the web

*Goal is to provide quick help when you’re stuck and have already tried to
diagnose and fix the problem

e Computing at home

—Java software and tools are freely available for download

eJava version MUST be 1.4+ Install entire SDK (Windows, Linux), or run
software update (Mac OS X)

*You may use any Java development environment you like.
*See Computing At Home page for links and details

* Even if you plan to compute at home, learn your way around the
UW labs

Some Technical Review

Possibly some new stuff, but pretty
important and pretty quick.

Core Java Concepts

* A class describes a template or pattern for things;
an object or instance of a class is a particular thing

* Constructors model ways to create new instances

* Methods model actions that these things can
perform (i.e., to carry out their responsibilities)

* Messages (method calls) model requests from one
thing to another

* Instance variables model the state or properties of
things

epublicvs.private
—Instance variables should normally be private

Types (Review)

* Everything in Java has a lype
+ A combination of state and operations
* Primitive Types: int, double, char, boolean, ...
+ Simple, atomic state
* Operations built in to Java language: +, -, %, /, % && 11, |, ...
- All other types — references to objects (class instances):
Rectangle, Color, Pixel, Circulationltem, Book; ...
- State is collection of instance variables
* Operations are methods
« Each class definition specifies a new type with that
name

128003 {cl E001-3, University ol Washington Wed

Inheritance

e A class can be defined as an extension of an

existing class

— class MP3 extends Music {...}

e MP3 is at least the same as Music in terms
of its methods and responsibilities

— Can add new methods

— Can change the definition of existing

methods

Types and Inheritance (1)
~When we define
class Book extends Ciroulationtern{ ...}
we create a new type, Book
*Instances of class Book have type Book, and also...
*.. have type Circulationitem
+ Not so odd if you think about it. Many things in the real world
have multiple “types” or roles. A person can be a student,
employee, pariner, child, parent, ...

Types and Inheritance (2)

class Bock extends Craulationltemn{ ..}

+ Rule: every Book object is also a Circulationltem object

+ Can be used in any situation where either a Book or
Circulationlternis expected

Book b =newBook(..);

Bock x =b;

Giroulationiternc =by;

- The reverse is not true: there are Circulationltems that

are not Books (plain Circulationltems, Journals)
» So this is not allowed
Oredationltern ¢ = new Cireulationiterry. .) ok
Bock bl =¢; Jf compile-time type ermor
Book b2 =(Book) ¢; #/ run time class cast exceplion ermor

Dynaric Types
+What are the dynamic types of the variables in the
following code?

Book b =new Book(“Short Story”, *A L Thor”, P34 567);
Circulationttem ¢ =new Circulationitem({"Rather Bland”, “A1");
Circulationitem d = new Joumali“Long *n Boring”, “Q45.367);

c=b

(£} 2001-3, University af Wastirgsan

The dynamic type of an object
determines how the object
behaves when you call it.

The static type of an
object determines how
you can use the object
when you compile it.

Static Types and Methods

« If we declare a variable

Qreulationlteme = ..

the only guarantee we have is that it refers to some sort
of Circulationltem
+ Compiler doesn't attermpt to trace values assigned to variables
to decide type information
+ So the only methods we can call using the variable c are the
ones available in its static type (Circulationlter)

1282003 {£) 20013, University of Washington V10

Method Override and Dynamic Dispatch

«When we exdend a class, we can redefine a method that
vie would otherwise inherit from the original class

~The redefined method is said to override the original
method definition

+When we call a method, the dynarmic fype of the object
is used to select the appropriate method

Dynamic Dispatch and Class Hierarchy Design
+Overriding and dynamic dispatch are powerful design
tools

+ldea: when designing a class hierarchy, define in the
original class methods which we want to be available for

all objects in the hierarchy
+Use overriding to provide specialized implementations

Creulationiiam ¢ = new Book _..); in extended classes
Systamuoul prntinic); i cyrerric fype of ¢ hene ls Book, so .
e D g e et
- This is called gymarmic {method) dispatch ng
Class Object What's in Class Object?

+The Java class structure has a root class: Object
- All Java classes implicitly extend Object if they don't
explicitly extend some other class (which itsell extends
Object directly or indirectly)
class Crculaliontamy ...}
mizans exactly the same thing as
dlass Oreuationfiam esdends Ohject { .}
+Classes like ArrayList have parameters and results of
type Object, so will handle any nor-prirmitive type
pubic vald addiObject o) { ...}
pubsic Obect gellint pasiten){ ..}

ot ol Y1 3, Urvnirsilp B RS b

+Object contains methods (not many) that are suitable for
all classes

+Class definitions can override these to provide more
appropriate, specific versions

toString

e Good while debugging

System.out.printin(anObject.toString());

e Secret Java lore:

— All Objects in Java have a built-in, default toString

method

— So why define your own??

* Question: how does the notion of dynamic/static
typing reveal itself in toString().

Overloading

*In aclass, itis possible to define rmore than one method
with the same name
class Thing:|
™ 00 sommethang interssting with a Rectardgle "/
pubiic woid dobjFeciangar) { .}
™ oo somethang interssting with an int 7
pubde woid dobing nf { ..}
*This is called method overloading
= Mot the same thing as method overriding

{ovenmicing ks subslituting & news methiod tor one that woukd Gtheraise ba inhesitad
when we esdand & dasa)

+Corrpiler picks right method to use by comparing call
argument types with parameters of available methods

Example of Overloading — System.out.printin

*Viie've been able to use Systemout.printin to print

anything. How does this work?

+ Answer: this method is overloaded for all the basic

types and for class Object
Systermoul printiniing
Systamuoul prirtingdoutia)
Systerrout pirtinichen)
Systermuout prininfbodiean)
Sysbamuoul prirtnCbyec| # s 1oSinng) o gt sting to be prnted -
. & werks for every kind of ebyect fwhy7)
= Compiler picks actual method to used depending on type of
thing being prnted

Abstract

* A method is abstract if it defines a signature that
has no implementation.

e A class 1s abstract if it includes an abstract method

— or inherits one without implementing it.

e An abstract class can not be instantiated.
— What would it do?

e Useful for defining the features of a class w/o
concern for its implementation.

e See: http://java.sun.com/docs/books/tutorial/java/javaOQ/abstract.html

JavaDoc

* Java provides a clean way of including documentation as
part of the source code — JavaDoc comments
—Begin with /** and end with */
* Can be automatically formatted to produce web
documentation
—Eg, “javadoc *.java”
* Special tags to control formatting
— @author — specify author
— @version — version number, date, etc.
— @param — description of a method parameter
— @return — description of a non-void method result
— Others (links, see also, ...), plus can use arbitrary html

e Used to produce all online Java API documentation

