CSE 143 Java

Sorting

Reading: Sec. 19.3

Sorting

5/2012004 (c) 2001-4, University of Washington 231

* Binary search is a huge speedup over sequential search
* But requires the list be sorted
« Slight Problem: How do we get a sorted list?
* Maintain the list in sorted order as each word is added
+ Sort the entire list when needed
» Many, many algorithms for sorting have been invented
and analyzed
* Our algorithms mostly assume the data is already in an
array
+ Other starting points and assumptions are possible

5/20/2004 (c) 2001-4, University of Washington 232

Insert for a Sorted List

+ One possibility: ensure the list is always sorted as it is created
« Exercise: Assume that words[0..size-1] is sorted. Place new
word in correct location so modified list remains sorted
« Assume that there is spare capacity for the new word
+ Before coding:
« Draw pictures of an example situation, before and after
« Write down the postconditions for the operation
Il given existing list words0..size-1], insert word in correct place and increase size
void insertWord(String word) {

sizet+t;

}

Picture

5/20/2004 (c) 2001-4, University of Washington 233

+ Draw your picture here

5/20/2004 (c) 2001-4, University of Washington 234

Insertion Sort

* Once we have insertWord working...

+ We can sort a list in place by repeating the insertion
operation
void insertionSort() {
int finalSize = size;
size =1,
for (intk = 1; k < finalSize; k++) {
insertWord(words[K]);
}

Insertion Sort As A Card Game Operation

5/2012004 (c) 2001-4, University of Washington 235

* A bit like sorting a hand full of cards dealt one by one:
* Pick up 1%t card - it's sorted, the hand is sorted
+ Pick up 2" card; insert it after or before 15t - both sorted
« Pick up 3" card; insert it after, between, or before 1t two
« Each time:
+ Determine where new card goes
+» Make room for the newly inserted card and place it there

CSE143 Sp04

5/2012004 (c) 2001-4, University of Washington 236

23-1

Insertion Sort As Invariant Progression

sorted *— unsorted
N A_AS
5/20/2004 (c) 2001-4, University of Washington 237

Insertion Sort Trace

+ Initial array contents

0 pear

1 orange

2 apple

3 rutabaga

4 aardvark

5 cherry

6 banana

7 kumguat

5/20/2004 (c) 2001-4, University of Washington

Analysis

* Why was binary search so much more effective than
sequential search?

« Answer: binary search divided the search space in half each
time; sequential search only reduced the search space by 1
item per iteration

* Why is insertion sort O(n?)?

« Each insert operation only gets 1 more item in place at cost
O(n)

«» O(n) insert operations

+ Can we do something similar for sorting?

5/2012004 (c) 2001-4, University of Washington 2311

" sorted”™ unsorfe:
Insertion Sort g=———
Ilinstance variable — e .
. . " . . . sorted unsorted
int[] list; Iist[0..size-1] is the list to be sorted
int size;
II'Sort list[0..size-1]
public void sort {
for (intj=1;j < size; j++) {
Ilpre: 1 <= &&j < size && list[0 ...]-1] is in sorted order
inttemp = list[j J;
for (inti=j-1;i>=0&&list[i] >temp ;i--) {
listfi+1] = list[i] ;
}
listfi+1] = temp ;
Il post: 1 <= && j < size && list[0 ... j] in sorted order
}
}
5/20/2004 (c) 2001-4, University of Washington 238
Insertion Sort Performance
+ Cost of each insertWord operation:
+ Number of times insertWord is executed:
* Total cost:
+ Can we do better?
5/20/2004 (c) 2001-4, University of Washington 23-10
Where are we on the chart?
N log,N 5N N log,N N? 2N
8 3 40 24 64 256
16 4 80 64 256 65536
32 5 160 160 1024 ~10°
64 6 320 384 4096 ~101°
128 7 640 896 16384 ~1038
256 8 1280 2048 65536 ~1076
10000 13 50000 105 108 ~108010
5/20/2004 (c) 2001-4, University of Washington 2312

CSE143 Sp04

23-2

Divide and Conquer Sorting

* Idea: emulate binary search in some ways
1. divide the sorting problem into two subproblems;
2. recursively sort each subproblem;
3. combine results

+ Want division and combination at the end to be fast

+ Want to be able to sort two halves independently

+ This algorithm strategy is called divide and conquer
F;

£

Quicksort

5/2012004 (C) 2001-4, University of Washington 2313

*Invented by C. A. R. Hoare (1962)
*ldea
* Pick an element of the list: the pivot

* Place all elements of the list smaller than the pivot in the half of
the list to its left; place larger elements to the right

* Recursively sort each of the halves
+ Before looking at any code, see if you can draw pictures
based just on the first two steps of the description

5/20/2004 (c) 2001-4, University of Washington 23-14

Code for QuickSort

I Sort words[0..size-1]

void quickSort() {
qgsort(0, size-1);

}

1I'Sort wordsflo...hi]
void gsort(int lo, int hi) {
I/ quit if empty partition
if (lo > hi) { return; }
int pivotLocation = partition(lo, hi); I/ partition array and return pivot loc
gsort(lo, pivotLocation-1);
qgsort(pivotLocation+1, hi);

}

Recursion Analysis

5/20/2004 (c) 2001-4, University of Washington 2315

*Base case? Yes.
Il quit if empty partition
if (lo > hi) { return; }
*Recursive cases? Yes
gsort(lo, pivotLocation-1);
gsort(pivotLocation+1, hi);
+ Each recursive cases work on a smaller subproblem, so
algorithm will terminate

5/20/2004 (c) 2001-4, University of Washington 2316

A Small Matter of Programming

* Partition algorithm
* Pick pivot
« Rearrange array so all smaller element are to the left, all larger
to the right, with pivot in the middle

« Partition is not recursive

« Fact of life: partition can be tricky to get right
« Pictures and invariants are your friends here

+ How do we pick the pivot?
« For now, keep it simple — use the first item in the interval
« Better strategies exist

Partition design

5/2012004 (c) 2001-4, University of Washington 2317

* We need to partition wordsf[lo..hi]
* Pick wordslo] as the pivot
* Picture:

CSE143 Sp04

5/20/2004 (c) 2001-4, University of Washington 2318

23-3

A Partition Implementation

+ Use first element of array section as the pivot

Partition Algorithm: PseudoCode

¢ Invariant:
lo L R hi
words X <=x unprocessed >X
T
pivot
5/20/2004 (c) 2001-4, University of Washington 23-19

The two-fingered method

I/ Partition words[lo..hi]; return location of pivot in range lo..hi
int partition(int lo, int hi) {

}

5/20/2004 (c) 2001-4, University of Washington 23-20

Partition Test

+ Check: partition(0,7)

0 orange

1 pear

2 apple

3 rutabaga

4 aardvark

5 cherry

6 banana

7 kumguat

Complexity of QuickSort

5/20/2004 (c) 2001-4, University of Washington

23-21

+ Each call to Quicksort (ignoring recursive calls):
+ Each call of partition() is O(n) where n is size of the part of
array being sorted
Note: This n is smaller than the N of the original problem
* Some O(1) work
* Total = O(n) (n is the size of array part being sorted)
* Including recursive calls:

« Two recursive calls at each level of recursion, each partitions
“half” the array at a cost of O(n/2)

* How many levels of recursion?

5/20/2004 (c) 2001-4, University of Washington 23-22

QuickSort (Ideally)

All boxes are executed (except
some of the 0 cases)

Total work at each level is O(N)

N Na | | s

/
o

N

QuickSort Performance (Ideal Case)

5/2012004 (c) 2001-4, University of Washington

23-23

« Each partition divides the list parts in half
* Sublist sizes on recursive calls: n, n/2, n/4, n/8....
+ Total depth of recursion:
* Total work at each level: O(n)
* Total costof quicksort: ___~~~ !

*For alist of 10,000 items
* Insertion sort: O(n?): 100,000,000
* Quicksort: O(n log n): 10,000 log, 10,000 = 132,877

CSE143 Sp04

5/20/2004 (c) 2001-4, University of Washington 23-24

23-4

Worst Case for QuickSort

« If we're very unlucky, then each pass through partition
removes only a single element.

« In this case, we have N levels of recursion rather than
log,N. What's the total complexity?

QuickSort Performance (Worst Case)

5/2012004 (c) 2001-4, University of Washington 23-25

« Each partition manages to pick the largest or smallest
item in the list as a pivot
* Sublist sizes on recursive calls:
* Total depth of recursion:
* Total work at each level: O(n)
* Total costof quicksort: ___~~~ !

5/20/2004 (c) 2001-4, University of Washington 23-26

Worst Case vs Average Case

* QuickSort has been shown to work well in the average
case (mathematically speaking)

*In practice, Quicksort works well, provided the pivot is
picked with some care

+» Some strategies for choosing the pivot:

« Compare a small number of list items (3-5) and pick the median
for the pivot

« Pick a pivot element randomly (!) in the range lo..hi

QuickSort as an Instance of Divide and Conquer

Generic Divide and QuickSort
Conquer
1. Divide Pick an element of the list: the pivot

Place all elements of the list smaller than the
pivot in the half of the list to its left; place
larger elements to the right

2. Solve subproblems Recursively sort each of the halves
separately (and
recursively)

5/20/2004 (c) 2001-4, University of Washington 2327

3. Combine Surprise! Nothing to do
subsolutions to get
overall solution

5/20/2004 (c) 2001-4, University of Washington 23-28

Another Divide-and-Conquer Sort: Mergesort

+ 1. Split array in half
« just take the first half and the second half of the array, without rearranging
+ 2. Sort the halves separately

+ 3. Combining the sorted halves (“merge”)
« repeatedly pick the least element from each array
« compare, and put the smaller in the resulting array
« example: if the two arrays are
1 12 15 20
5 6 13 21 30
The "merged" array is
15612 13 15 20 21 30
« note: we will need a second array to hold the result

Quicksort vs MergeSort

5/2012004 (c) 2001-4, University of Washington 23-29

+» Mergesort always has subproblems of size n/2
+» Which means guaranteed O(n log n)
* But mergesort requires an extra array for the result
+ No problem if you're sorting disk or tape files
+ Can be a problem if you're trying to sort large lists in main
memory
+In practice, quicksort is the most commonly used
general-purpose sort
* Pretty easy to pick pivots well, so expected time is O(n log n)
+ Doesn’t require extra space for a copy of the data

CSE143 Sp04

5/20/2004 (c) 2001-4, University of Washington 23-30

23-5

Summary

+Divide and Conquer
« Algorithm design strategy that exploits recursion
« Divide original problem into subproblems
« Solve each subproblem recursively
« Can sometimes yield dramatic performance improvements
* Sorting
* Quicksort, mergesort: classic divide and conquer algorithms

5/2012004 (c) 2001-4, University of Washington 2331

CSE143 Sp04 23-6

