CSE 143 Java Sorting Reading: Sec. 19.3 5/20/2004 (c) 2001-4, University of Washington 23-1

Sorting

- Binary search is a huge speedup over sequential search
 - · But requires the list be sorted
- · Slight Problem: How do we get a sorted list?
 - · Maintain the list in sorted order as each word is added
 - · Sort the entire list when needed
- Many, many algorithms for sorting have been invented and analyzed
- Our algorithms mostly assume the data is already in an array

23-2

· Other starting points and assumptions are possible

0/2004 (c) 2001-4, University of Washington

Insert for a Sorted List One possibility: ensure the list is always sorted as it is created Exercise: Assume that words[0..size-1] is sorted. Place new word in correct location so modified list remains sorted Assume that there is spare capacity for the new word Before coding: Draw pictures of an example situation, before and after Write down the postconditions for the operation // given existing list words[0..size-1], insert word in correct place and increase size void insertWord(String word) {

Picture

· Draw your picture here

5/20/2004 (c) 2001-4, University of Washington

Insertion Sort

- Once we have insertWord working...
- We can sort a list in place by repeating the insertion operation

```
void insertionSort() {
    int finalSize = size;
    size = 1;
    for (int k = 1; k < finalSize; k++) {
        insertWord(words[k]);
    }
}</pre>
```

5/20/2004

(c) 2001-4, University of Washington

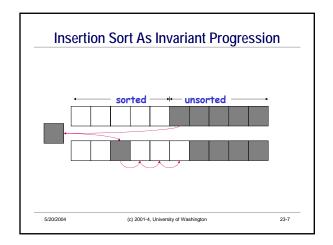
Insertion Sort As A Card Game Operation

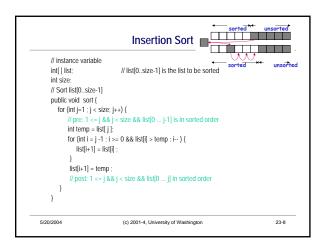
- A bit like sorting a hand full of cards dealt one by one:
- Pick up 1st card it's sorted, the hand is sorted
- ullet Pick up 2^{nd} card; *insert* it after or before 1^{st} both sorted
- Pick up 3^{rd} card; insert it after, between, or before 1^{st} two
- ...
- · Each time:
 - · Determine where new card goes
 - ${\boldsymbol{\cdot}}$ Make room for the newly inserted card and place it there

5/20/2004

(c) 2001-4, University of Washington

23-6





Insertion Sort Trace • Initial array contents 0 pear 1 orange 2 apple 3 rutabaga 4 aardvark 5 cherry 6 banana 7 kumquat (c) 2001-4, University of Washington 23-9

Insertion Sort Performance Cost of each insertWord operation: Number of times insertWord is executed: Total cost: Can we do better?

Analysis • Why was binary search so much more effective than sequential search? • Answer: binary search divided the search space in half each time; sequential search only reduced the search space by 1 item per iteration • Why is insertion sort O(n²)? • Each insert operation only gets 1 more item in place at cost O(n) • O(n) insert operations • Can we do something similar for sorting?

		/here are we on the ch			••
N	log ₂ N	5N	N log ₂ N	N ²	2 ^N
8	3	40	24	64	256
16	4	80	64	256	65536
32	5	160	160	1024	~109
64	6	320	384	4096	~1019
128	7	640	896	16384	~1038
256	8	1280	2048	65536	~1076
10000	13	50000	105	108	~103010

Divide and Conquer Sorting

- Idea: emulate binary search in some ways
- 1. divide the sorting problem into two subproblems;
- 2. recursively sort each subproblem;
- 3. combine results
- · Want division and combination at the end to be fast
- · Want to be able to sort two halves independently
- This algorithm strategy is called divide and conquer

5/20/2004

(c) 2001-4, University of Washington

23-13

Quicksort

- · Invented by C. A. R. Hoare (1962)
- Idea
 - Pick an element of the list: the pivot
 - Place all elements of the list smaller than the pivot in the half of the list to its left; place larger elements to the right
 - · Recursively sort each of the halves
- Before looking at any code, see if you can draw pictures based just on the first two steps of the description

5/20/200

(c) 2001-4, University of Washington

23-14

Code for QuickSort

```
// Sort words[0..size-1]
void quickSort() {
    qsort(0, size-1);
}

// Sort words[lo..hi]
void qsort(int lo, int hi) {
    // quit if empty partition
    if (lo > hi) { return; }
    int pivotLocation = partition(lo, hi);
    qsort(lo, pivotLocation-1);
    qsort(pivotLocation+1, hi);
}
```

(c) 2001-4, University of Washington

Recursion Analysis

· Base case? Yes.

// quit if empty partition if (lo > hi) { return; }

· Recursive cases? Yes

qsort(lo, pivotLocation-1);
qsort(pivotLocation+1, hi);

• Each recursive cases work on a smaller subproblem, so algorithm will terminate

5/20/2004

(c) 2001-4, University of Washington

A Small Matter of Programming

- Partition algorithm
 - · Pick pivot

5/20/2004

- Rearrange array so all smaller element are to the left, all larger to the right, with pivot in the middle
- Partition is not recursive
- Fact of life: partition can be tricky to get right
- · Pictures and invariants are your friends here
- · How do we pick the pivot?
 - For now, keep it simple use the first item in the interval
 - · Better strategies exist

5/20/2004

(c) 2001-4, University of Washington

23-17

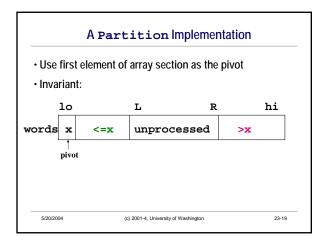
Partition design

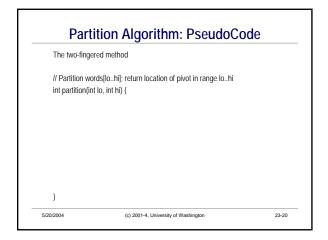
- We need to partition words[lo..hi]
- · Pick words[lo] as the pivot
- Picture:

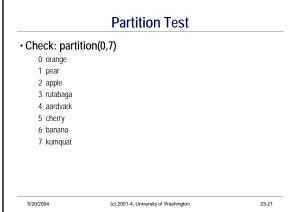
5/20/20

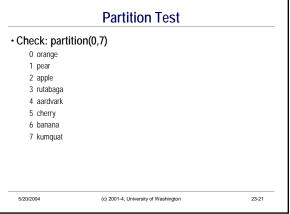
(c) 2001-4, University of Washington

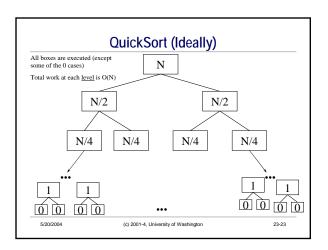
23-18











Complexity of QuickSort • Each call to Quicksort (ignoring recursive calls): ullet Each call of partition() is O(n) where n is size of the ${\it part}$ of array being sorted Note: This n is smaller than the N of the original problem · Some O(1) work • Total = O(n) (n is the size of array part being sorted) · Including recursive calls: · Two recursive calls at each level of recursion, each partitions "half" the array at a cost of O(n/2) · How many levels of recursion? (c) 2001-4, University of Washington

QuickSort Performance (Ideal Case) · Each partition divides the list parts in half • Sublist sizes on recursive calls: n, n/2, n/4, n/8.... · Total depth of recursion: · Total work at each level: O(n) · Total cost of quicksort: ___ · For a list of 10,000 items • Insertion sort: O(n2): 100,000,000 • Quicksort: O(n log n): 10,000 log₂ 10,000 = 132,877 (c) 2001-4, University of Washington

CSE143 Sp04 23-4

5/20/2004

Worst Case for QuickSort

 If we're very unlucky, then each pass through partition removes only a single element.

• In this case, we have N levels of recursion rather than $\log_2 N$. What's the total complexity?

5/20/2004 (c) 2001-4, University of Washington

QuickSort Performance (Worst Case)

- Each partition manages to pick the largest or smallest item in the list as a pivot
- · Sublist sizes on recursive calls:
- · Total depth of recursion:
- · Total work at each level: O(n)
- Total cost of quicksort: _____!

5/20/2004

(c) 2001-4, University of Washington

23-26

Worst Case vs Average Case

- QuickSort has been shown to work well in the average case (mathematically speaking)
- In practice, Quicksort works well, provided the pivot is picked with some care
- · Some strategies for choosing the pivot:
 - Compare a small number of list items (3-5) and pick the *median* for the pivot
 - Pick a pivot element *randomly* (!) in the range lo..hi

5/20/2004

(c) 2001-4, University of Washington

23-27

QuickSort as an Instance of Divide and Conquer

Generic Divide and Conquer	QuickSort
1. Divide	Pick an element of the list: the <i>pivot</i> Place all elements of the list smaller than the pivot in the half of the list to its left; place larger elements to the right
2. Solve subproblems separately (and recursively)	Recursively sort each of the halves
3. Combine subsolutions to get overall solution	Surprise! Nothing to do

Another Divide-and-Conquer Sort: Mergesort

- 1. Split array in half
- just take the first half and the second half of the array, without rearranging
- · 2. Sort the halves separately
- 3. Combining the sorted halves ("merge")
 - $\boldsymbol{\cdot}$ repeatedly pick the least element from each array
 - · compare, and put the smaller in the resulting array
 - example: if the two arrays are

1 12 15 20 5 6 13 21 30 The "merged" array is 1 5 6 12 13 15 20 21 30

· note: we will need a second array to hold the result

5/20/2004

(c) 2001-4, University of Washington

23,20

Quicksort vs MergeSort

- Mergesort always has subproblems of size n/2
- Which means guaranteed O(n log n)
- But mergesort requires an extra array for the result
- No problem if you're sorting disk or tape files
- Can be a problem if you're trying to sort large lists in main memory
- In practice, quicksort is the most commonly used general-purpose sort
- Pretty easy to pick pivots well, so expected time is O(n log n)
- Doesn't require extra space for a copy of the data

5/20/2004

(c) 2001-4, University of Washington

23-30

Summary

- Divide and Conquer
 - Algorithm design strategy that exploits recursion
 - Divide original problem into subproblems
 - Solve each subproblem recursively
 - Can sometimes yield dramatic performance improvements
- Sorting
- Quicksort, mergesort: classic divide and conquer algorithms

5/20/2004

(c) 2001-4, University of Washington

23-31