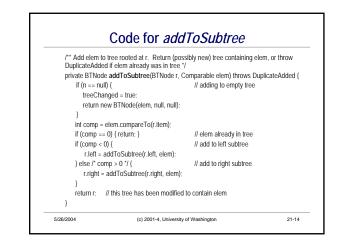
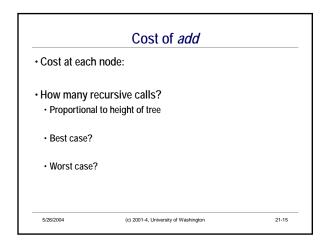
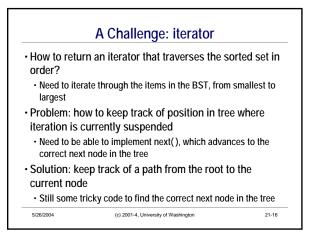
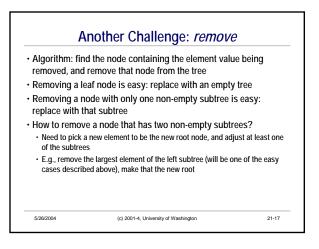
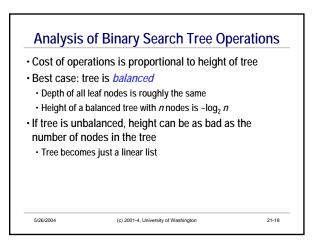

/^^ Return	whether elem is in set */		
	lean contains(Object elem) {		
return	subtreeContains(root, (Comparable)e	elem);	
}			
// Return v	whether elem is in (sub-)tree with root	r	
private bo	olean subtreeContains(BTNode r, C	omparable elem) {	
if (r ==	null) {		
ret	urn;		
} else	(
ini	comp = elem.compareTo(r.item);		
if	(comp == 0) { return	;}	// found it!
els	se if (comp < 0) { return		; } // search lef
el	se /* comp > 0 */ { return		; } // search righ
}			
-			










// instance variable	
private boolean treeChanged;	// true if addToSubtree changes the tree, false if not // (hack since addToSubtree can only return one value
/** Ensure that elem is in the si public boolean add(Object eler treeChanged = false; root = addToSubtree(root, return treeChanged;	
}	
	. Return (possibly new) tree containing elem, and set
* treeChanged = true if the n	5
private B i Node add i o Subtre	e(BTNode r, Comparable elem) {

Summary

- A binary search tree is a good general implementation of a set, if the elements can be ordered
 - Both contains and add benefit from divide-and-conquer strategy
 - No sliding needed for add
 - Good properties depend on the tree being roughly balanced

• Not covered (or, why take a data structures course?)

- How are other operations implemented (e.g. iterator, remove)?
- Can you keep the tree balanced as items are added and

removed?

(c) 2001-4, University of Washington

21-19