
CSE143 Sp04 21-1

5/26/2004 (c) 2001-4, University of Washington 21-1

CSE 143

Binary Search Trees

5/26/2004 (c) 2001-4, University of Washington 21-2

Costliness of contains
• Review: in a binary tree, contains is O(N)
• contains may be a frequent operation in an application
• Can we do better than O(N)?
• Turn to list searching for inspiration...

• Why was binary search so much better than linear search?
• Can we apply the same idea to trees?

5/26/2004 (c) 2001-4, University of Washington 21-3

Binary Search Trees
• Idea: order the nodes in the tree so that, given that a

node contains a value v,
• All nodes in its left subtree contain values < v
• All nodes in its right subtree contain values > v

• A binary tree with these properties is called a binary
search tree (BST)

• Notes:
• Can also define a BST using >= and <= instead of >, <

This implies there could be duplicate values in the tree
• In Java, if the values are not primitive types, they must

implement interface comparable (i.e., provide compareTo)

5/26/2004 (c) 2001-4, University of Washington 21-4

Examples(?)
• Are these are binary search trees? Why or why not?

9

4

2 7

3 6 81

12

15

14

9

8

2 7

3 5 61

12

15

14

5/26/2004 (c) 2001-4, University of Washington 21-5

Implementing a Set with a BST
• Can exploit properties of BSTs to have fast, divide-and-

conquer implementations of Set's add and contains
operations
• TreeSet!

• A TreeSet can be represented by a pointer to the root
node of a binary search tree, or null of no elements yet

public class SimpleTreeSet implements Set {
private BTNode root; // root node, or null if none
public SimpleTreeSet() { root = null; }
// size as for BinTree
…

}

5/26/2004 (c) 2001-4, University of Washington 21-6

contains for a BST
• For a general binary tree, contains had to search both

subtrees
• Like linear search

• With BSTs, need to only search one subtree
• All small elements to the left, all large elements to the right
• Search either left or right subtree, based on comparison

between elem and value at root of tree
• Like binary search

CSE143 Sp04 21-2

5/26/2004 (c) 2001-4, University of Washington 21-7

Code for contains (in TreeSet)
/** Return whether elem is in set */
public boolean contains(Object elem) {

return subtreeContains(root, (Comparable)elem);
}
// Return whether elem is in (sub-)tree with root r
private boolean subtreeContains(BTNode r, Comparable elem) {

if (r == null) {
return ____________________ ;

} else {
int comp = elem.compareTo(r.item);
if (comp == 0) { return _____________________ ; } // found it!
else if (comp < 0) { return ____________________________ ; } // search left
else /* comp > 0 */ { return ____________________________ ; } // search right

}
}

5/26/2004 (c) 2001-4, University of Washington 21-8

Examples

9

4

2 7

3 6 81

12

15

14

contains(6)

root
9

4

2 7

3 6 81

12

15

14

contains(10)

root

5/26/2004 (c) 2001-4, University of Washington 21-9

Cost of BST contains
• Work done at each node:

• Number of nodes visited (depth of recursion):

• Total cost:

5/26/2004 (c) 2001-4, University of Washington 21-10

add
• Must preserve BST invariant: insert new element in

correct place in BST
• Two base cases

• Tree is empty: create new node which becomes the root of the
tree

• If node contains the value, found it; suppress duplicate add
• Recursive case

• Compare value to current node’s value
• If value < current node's value, add to left subtree recursively
• Otherwise, add to right subtree recursively

5/26/2004 (c) 2001-4, University of Washington 21-11

Example
• Add 8, 10, 5, 1, 7, 11 to an initially empty BST, in that

order:

5/26/2004 (c) 2001-4, University of Washington 21-12

Example (2)
• What if we change the order in which the numbers are

added?
• Add 1, 5, 7, 8, 10, 11 to a BST, in that order (following the

algorithm):

CSE143 Sp04 21-3

5/26/2004 (c) 2001-4, University of Washington 21-13

Code for add (in TreeSet)
// instance variable
private boolean treeChanged; // true if addToSubtree changes the tree, false if not

// (hack since addToSubtree can only return one value

/** Ensure that elem is in the set. Return true if elem was added, false otherwise. */
public boolean add(Object elem) {

treeChanged = false;
root = addToSubtree(root, (Comparable)elem); // add elem to tree
return treeChanged;

}
/** Add elem to tree rooted at r. Return (possibly new) tree containing elem, and set

* treeChanged = true if the node was actually added */
private BTNode addToSubtree(BTNode r, Comparable elem) {

…
}

5/26/2004 (c) 2001-4, University of Washington 21-14

Code for addToSubtree
/** Add elem to tree rooted at r. Return (possibly new) tree containing elem, or throw
DuplicateAdded if elem already was in tree */
private BTNode addToSubtree(BTNode r, Comparable elem) throws DuplicateAdded {

if (n == null) { // adding to empty tree
treeChanged = true;
return new BTNode(elem, null, null);

}
int comp = elem.compareTo(r.item);
if (comp == 0) { return; } // elem already in tree
if (comp < 0) { // add to left subtree

r.left = addToSubtree(r.left, elem);
} else /* comp > 0 */ { // add to right subtree

r.right = addToSubtree(r.right, elem);
}
return r; // this tree has been modified to contain elem

}

5/26/2004 (c) 2001-4, University of Washington 21-15

Cost of add
• Cost at each node:

• How many recursive calls?
• Proportional to height of tree

• Best case?

• Worst case?

5/26/2004 (c) 2001-4, University of Washington 21-16

A Challenge: iterator
• How to return an iterator that traverses the sorted set in

order?
• Need to iterate through the items in the BST, from smallest to

largest
• Problem: how to keep track of position in tree where

iteration is currently suspended
• Need to be able to implement next(), which advances to the

correct next node in the tree
• Solution: keep track of a path from the root to the

current node
• Still some tricky code to find the correct next node in the tree

5/26/2004 (c) 2001-4, University of Washington 21-17

Another Challenge: remove
• Algorithm: find the node containing the element value being

removed, and remove that node from the tree
• Removing a leaf node is easy: replace with an empty tree
• Removing a node with only one non-empty subtree is easy:

replace with that subtree
• How to remove a node that has two non-empty subtrees?

• Need to pick a new element to be the new root node, and adjust at least one
of the subtrees

• E.g., remove the largest element of the left subtree (will be one of the easy
cases described above), make that the new root

5/26/2004 (c) 2001-4, University of Washington 21-18

Analysis of Binary Search Tree Operations
• Cost of operations is proportional to height of tree
• Best case: tree is balanced

• Depth of all leaf nodes is roughly the same
• Height of a balanced tree with n nodes is ~log2 n

• If tree is unbalanced, height can be as bad as the
number of nodes in the tree
• Tree becomes just a linear list

CSE143 Sp04 21-4

5/26/2004 (c) 2001-4, University of Washington 21-19

Summary
• A binary search tree is a good general implementation of

a set, if the elements can be ordered
• Both contains and add benefit from divide-and-conquer

strategy
• No sliding needed for add
• Good properties depend on the tree being roughly balanced

• Not covered (or, why take a data structures course?)
• How are other operations implemented (e.g. iterator, remove)?
• Can you keep the tree balanced as items are added and

removed?

