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CSE 143 Java

Collections

Reading: Ch. 12 (mostly review), Ch. 21
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Collections
• Most programs need to store and access collections of 

data
• Collections are worth studying because...

• They are widely useful in programming
• They provide examples of the OO approach to design and 

implementation
identify common pattern
regularize interface to increase commonality
factor them out into common interfaces, abstract classes

• Their implementation will raise issues previously swept under 
the rug, particularly efficiency
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Goals for Upcoming Lectures
• Survey different kinds of collections, focusing on their 

interfaces
• Lists, sets, maps
• Iterators over collections

• Then look at different possible implementations
• Arrays, linked lists, hash tables, trees
• Mix-and-match implementations to interfaces

• Compare implementations for efficiency
• How do we measure efficiency?
• Implementation tradeoffs

• Along the way, point out useful applications
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Collections in Java
• Java has a variety of facilities to support programming with 

collections
• Most are part of package java.util
• Most were introduced in Java 1.2
• Collectively referred to as the "Collections Framework"

• Lots of this you have already used!
• Primary components

1. A set of interfaces for common container types
2. Concrete implementations of these containers
3. Interfaces for support operations
4. Static utility methods
5. Wrappers and adapters (won't be covered)
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Where You're Coming From...
We've already used these Collections features extensively
• ArrayList

• Indexed collection of Objects
• No limit on size
• Methods:

• Iterator
• Sequence through an ArrayList
• Methods:

• Comparable and Comparator
• Sort methods

• Arrays.sort, Collections.sort
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Interfaces
• Key interfaces in Java 1.2 and later:

• Collection – a collection of objects
• List extends Collection – ordered sequence of Objects (first, 

second, third, …); duplicates allowed
• Set extends Collection – unordered collection of Objects; 

duplicates suppressed
• Map – collection of <key, value> pairs; each key may appear 

only once in the collection; item lookup is via key values*
(Think of pairs like <word, definition>, <id#, student record>,
<book ISBN number, book catalog description>, etc.)
*technically not an extension of Collection, but interface is generally similar

• Iterator – provides element-by-element access to items in a 
collection
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Java 2 Collection Implementations
• Main concrete implementations of these interfaces:

• ArrayList implements List (using arrays)
• LinkedList implements List (using linked lists)

• HashSet implements Set (using hash tables)
• TreeSet implements Set (using trees)

• HashMap implements Map (using hash tables)
• TreeMap implements Map (using trees)
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Footnote: Pre-Java 2 Collections
• Java 1.0 and 1.1 had different collection classes

• still retained because they are used in existing (old) code

• Correspondence of some classes and interfaces:
• Java 1.2 Java 1.0, 1.1

ArrayList Vector
Map Dictionary
HashMap HashTable
Iterator Enumeration

• Newer classes generally lighter weight, more efficient, 
but very similar interfaces

• Use the new classes only unless you have a specific 
reason to use the old ones
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interface Collection
• Basic methods available on most collections:

int size( ) – # of items currently in the collection
boolean isEmpty( ) – (size( ) == 0)
boolean contains(Object o) – true if o is in the collection

[how to compare o with the elements already in the collection?]
boolean add(Object o) – ensure that o is in the collection, possibly adding it;

return true if collection altered; false if not.  [leaves a lot unspecified….]
boolean addAll(Collection other) – add all elements in the other collection
boolean remove(Object o) – remove one o from the collection, if present;

return true if something was actually removed
void clear( ) – remove all elements
Iterator iterator( ) – return an iterator object for this collection

• Note: much richer interface than an array
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interface Iterator
• Provides access to elements of any collection one-by-

one, even if the collection has no natural ordering (sets, 
maps are not ordered)

• Interface
boolean hasNext( ) – true if the iteration has more elements
Object next( ) – next element in the iteration; precondition: hasNext( ) == true
void remove( ) – remove from the underlying collection the element last returned

by the iteration. [Optional; some collections don’t support this.]
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Standard Iterator Loop Pattern
Collection c = …;
Iterator iter = c.iterator( );
while (iter.hasNext( )) {

Object elem = iter.next( );
…  // do something with elem

}

• Note similarity to generic file/stream processing loop:
open stream -- perhaps from file
while not at end of stream {

read/write next data item, do something with it
}
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Iterators vs. Counter Loops
• A related pattern is the counting loop:

ArrayList list = …;

for (int i = 0; i < list.size( ); i ++) {
Object elem = list.get(i);
…  // do something with elem

}

• The iterator pattern is generally preferable because it...
• works for any collection, even those without a get(int) operation
• encapsulates the tedious details of iterating, indexing
• is efficient – get(i) is not fast in some collections, even if available 

• CSE143 style rule: use iterator pattern
• Unless there are compelling reasons to use a counting loop



CSE143 Sp04 13-4

7/26/2004 (c) 2001-4, University of Washington 13-13

Collection Contents: Objects

• All Java Collections store Objects
• Cannot store primitive types directly

• Use wrapper classes if needed

• Values returned from Collections must be cast back to a type
Integer age = new Integer(21);
ArrayList ageList = new ArrayList( );
ageList.add(0, age);

Integer ageAgain = ageList.get(0); // type error!
Object ageAgain = ageList.get(0); // correct – but not always useful!

Integer ageAgain = (Integer) ageList.get(0); // correct and useful

• Contrast: Arrays are declared with a single, specific element type
• Could be any type: Object, primitive type, interface, abstract class, concrete 

class, another array, etc.
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Lists as Collections
• In some collections, there is no natural order

• Toys in a toybox, grocery items in a bag, grains of sand on the 
beach

• In other collections, the order of elements is natural and 
important
• Chapters of a book, floors in a building, people camping out to 

buy Star Wars tickets

• Lists are collections where the elements have an order
• Each element has a definite position (first, second, third, …)
• positions are generally numbered from 0
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interface List extends Collection
• Following are included in all Java Lists (and some other 

Collection types):
Object get(int pos) – return element at position pos
boolean set(int pos, Object elem) – store elem at position pos
boolean add(int pos, Object elem) – store elem at position pos; slide elements

at position pos to size( )-1 up one position to the right
Object remove(int pos) – remove item at given position; shift remaining 

elements to the left to fill the gap; return the removed element
int indexOf(Object o) – return position of first occurrence of o in the list, or

-1 if not found

• Precondition for most of these is 0 <= pos < size( )
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interface ListIterator extends Iterator
• The iterator( ) method for a List actually returns an 

instance of ListIterator (extends Iterator)
• Can also use listIterator(int pos) to get a ListIterator starting at 

the given position in the list

• ListIterator returns objects in the list collection in the 
order they appear in the collection

• Supports additional methods:
hasPrevious( ), previous( ) – for iterating backwards through a list
set(Object o) – to replace the current element with something else
add(Object o) – to insert an element after the current element
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List Implementations
• ArrayList – internal data structure is an array

• Fast iterating
• Fast access to individual elements (get(int), set(int, Object))
• Slow add/remove except at the end of the list

• LinkedList – internal data structure is a linked list
• Fast iterating
• Slow access to individual elements (get(int), set(int, Object))
• Fast add/remove, even in the middle of the list

• We’ll dissect both forms of implementation shortly
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interface Set extends Collection
• As in math, a Set is an unordered collection, with no 

duplicate elements
• attempting to add an element already in the set does not 

change the set

• Interface is same as Collection, but refines the 
specifications
• The specs are in the form of comments

• interface SortedSet extends Set
• Same as Set, but iterators always return set elements in order
• Requires that elements be Comparable: implement the 

compareTo(Object) method, returning a negative, 0, or positive 
number to mean <=, ==, or >=, respectively
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interface Map
• Collections of <key, value> pairs

• keys are unique, but values need not be

• Doesn't extend Collection, but does provide similar methods
size( ), isEmpty( ), clear( )

• Basic methods for dealing with <key, value> pairs:
Object put(Object key, Object value) – add <key, value> to the map, replacing 

the previous <key, value> mapping if one exists

void putAll(Map other) – put all <key, value> pairs from other into this map
Object get(Object key) – return the value associated with the given key, or null

if key is not present
Object remove(Object key) – remove any mapping for the given key

boolean containsKey(Object key) – true if key appears in a <key, value> pair
boolean containsValue(Object value) – true if value appears in a <key, value>
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Maps and Iteration
• Map provides methods to view contents of a map as a collection:

Set keySet( ) – return a Set whose elements are the keys of this map
Collection values( ) – return a Collection whose elements are the values

contained in this map 
[why is one a set and the other a collection?]

• To iterate through the keys or values or both, grab one of these
collections, and then iterate through that

Map map = …;
Set keys = map.keySet( );
Iterator iter = keys.iterator( );
while (iter.hasNext( )) {

Object key = iter.next( );
Object value = map.get(key);
…   // do something with key and value

}
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interface SortedMap extends Map
• SortedMap can be used for maps where we want to store 

key/value pairs in order of their keys
• Requires keys to be Comparable, using compareTo

• Sorting affects the order in which keys and values are 
iterated through
• keySet( ) returns a SortedSet
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Interoperating
• It is relatively easy to shift between various collections
• One collection to another:

• addAll(Collection)

• Arrays to Lists:
static List Arrays.asList(array)

• Lists to Arrays:
• Object[] aList.toArray(List)
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Preview of Coming Attractions
1. Study ways to implement these interfaces

• Array-based vs. link-list-based vs. hash-table-based vs. tree-
based

2. Compare implementations
• What does it mean to say one implementation is “faster” 

than another?
• Basic complexity theory – O( ) notation

3. Use these and other data structures in our 
programming


