
CSE143 Sp04 13-1

7/26/2004 (c) 2001-4, University of Washington 13-1

CSE 143 Java

Collections

Reading: Ch. 12 (mostly review), Ch. 21

7/26/2004 (c) 2001-4, University of Washington 13-2

Collections
• Most programs need to store and access collections of

data
• Collections are worth studying because...

• They are widely useful in programming
• They provide examples of the OO approach to design and

implementation
identify common pattern
regularize interface to increase commonality
factor them out into common interfaces, abstract classes

• Their implementation will raise issues previously swept under
the rug, particularly efficiency

7/26/2004 (c) 2001-4, University of Washington 13-3

Goals for Upcoming Lectures
• Survey different kinds of collections, focusing on their

interfaces
• Lists, sets, maps
• Iterators over collections

• Then look at different possible implementations
• Arrays, linked lists, hash tables, trees
• Mix-and-match implementations to interfaces

• Compare implementations for efficiency
• How do we measure efficiency?
• Implementation tradeoffs

• Along the way, point out useful applications

7/26/2004 (c) 2001-4, University of Washington 13-4

Collections in Java
• Java has a variety of facilities to support programming with

collections
• Most are part of package java.util
• Most were introduced in Java 1.2
• Collectively referred to as the "Collections Framework"

• Lots of this you have already used!
• Primary components

1. A set of interfaces for common container types
2. Concrete implementations of these containers
3. Interfaces for support operations
4. Static utility methods
5. Wrappers and adapters (won't be covered)

CSE143 Sp04 13-2

7/26/2004 (c) 2001-4, University of Washington 13-5

Where You're Coming From...
We've already used these Collections features extensively
• ArrayList

• Indexed collection of Objects
• No limit on size
• Methods:

• Iterator
• Sequence through an ArrayList
• Methods:

• Comparable and Comparator
• Sort methods

• Arrays.sort, Collections.sort

7/26/2004 (c) 2001-4, University of Washington 13-6

Interfaces
• Key interfaces in Java 1.2 and later:

• Collection – a collection of objects
• List extends Collection – ordered sequence of Objects (first,

second, third, …); duplicates allowed
• Set extends Collection – unordered collection of Objects;

duplicates suppressed
• Map – collection of <key, value> pairs; each key may appear

only once in the collection; item lookup is via key values*
(Think of pairs like <word, definition>, <id#, student record>,
<book ISBN number, book catalog description>, etc.)
*technically not an extension of Collection, but interface is generally similar

• Iterator – provides element-by-element access to items in a
collection

7/26/2004 (c) 2001-4, University of Washington 13-7

Java 2 Collection Implementations
• Main concrete implementations of these interfaces:

• ArrayList implements List (using arrays)
• LinkedList implements List (using linked lists)

• HashSet implements Set (using hash tables)
• TreeSet implements Set (using trees)

• HashMap implements Map (using hash tables)
• TreeMap implements Map (using trees)

7/26/2004 (c) 2001-4, University of Washington 13-8

Footnote: Pre-Java 2 Collections
• Java 1.0 and 1.1 had different collection classes

• still retained because they are used in existing (old) code

• Correspondence of some classes and interfaces:
• Java 1.2 Java 1.0, 1.1

ArrayList Vector
Map Dictionary
HashMap HashTable
Iterator Enumeration

• Newer classes generally lighter weight, more efficient,
but very similar interfaces

• Use the new classes only unless you have a specific
reason to use the old ones

CSE143 Sp04 13-3

7/26/2004 (c) 2001-4, University of Washington 13-9

interface Collection
• Basic methods available on most collections:

int size() – # of items currently in the collection
boolean isEmpty() – (size() == 0)
boolean contains(Object o) – true if o is in the collection

[how to compare o with the elements already in the collection?]
boolean add(Object o) – ensure that o is in the collection, possibly adding it;

return true if collection altered; false if not. [leaves a lot unspecified….]
boolean addAll(Collection other) – add all elements in the other collection
boolean remove(Object o) – remove one o from the collection, if present;

return true if something was actually removed
void clear() – remove all elements
Iterator iterator() – return an iterator object for this collection

• Note: much richer interface than an array

7/26/2004 (c) 2001-4, University of Washington 13-10

interface Iterator
• Provides access to elements of any collection one-by-

one, even if the collection has no natural ordering (sets,
maps are not ordered)

• Interface
boolean hasNext() – true if the iteration has more elements
Object next() – next element in the iteration; precondition: hasNext() == true
void remove() – remove from the underlying collection the element last returned

by the iteration. [Optional; some collections don’t support this.]

7/26/2004 (c) 2001-4, University of Washington 13-11

Standard Iterator Loop Pattern
Collection c = …;
Iterator iter = c.iterator();
while (iter.hasNext()) {

Object elem = iter.next();
… // do something with elem

}

• Note similarity to generic file/stream processing loop:
open stream -- perhaps from file
while not at end of stream {

read/write next data item, do something with it
}

7/26/2004 (c) 2001-4, University of Washington 13-12

Iterators vs. Counter Loops
• A related pattern is the counting loop:

ArrayList list = …;

for (int i = 0; i < list.size(); i ++) {
Object elem = list.get(i);
… // do something with elem

}

• The iterator pattern is generally preferable because it...
• works for any collection, even those without a get(int) operation
• encapsulates the tedious details of iterating, indexing
• is efficient – get(i) is not fast in some collections, even if available

• CSE143 style rule: use iterator pattern
• Unless there are compelling reasons to use a counting loop

CSE143 Sp04 13-4

7/26/2004 (c) 2001-4, University of Washington 13-13

Collection Contents: Objects

• All Java Collections store Objects
• Cannot store primitive types directly

• Use wrapper classes if needed

• Values returned from Collections must be cast back to a type
Integer age = new Integer(21);
ArrayList ageList = new ArrayList();
ageList.add(0, age);

Integer ageAgain = ageList.get(0); // type error!
Object ageAgain = ageList.get(0); // correct – but not always useful!

Integer ageAgain = (Integer) ageList.get(0); // correct and useful

• Contrast: Arrays are declared with a single, specific element type
• Could be any type: Object, primitive type, interface, abstract class, concrete

class, another array, etc.

7/26/2004 (c) 2001-4, University of Washington 13-14

Lists as Collections
• In some collections, there is no natural order

• Toys in a toybox, grocery items in a bag, grains of sand on the
beach

• In other collections, the order of elements is natural and
important
• Chapters of a book, floors in a building, people camping out to

buy Star Wars tickets

• Lists are collections where the elements have an order
• Each element has a definite position (first, second, third, …)
• positions are generally numbered from 0

7/26/2004 (c) 2001-4, University of Washington 13-15

interface List extends Collection
• Following are included in all Java Lists (and some other

Collection types):
Object get(int pos) – return element at position pos
boolean set(int pos, Object elem) – store elem at position pos
boolean add(int pos, Object elem) – store elem at position pos; slide elements

at position pos to size()-1 up one position to the right
Object remove(int pos) – remove item at given position; shift remaining

elements to the left to fill the gap; return the removed element
int indexOf(Object o) – return position of first occurrence of o in the list, or

-1 if not found

• Precondition for most of these is 0 <= pos < size()

7/26/2004 (c) 2001-4, University of Washington 13-16

interface ListIterator extends Iterator
• The iterator() method for a List actually returns an

instance of ListIterator (extends Iterator)
• Can also use listIterator(int pos) to get a ListIterator starting at

the given position in the list

• ListIterator returns objects in the list collection in the
order they appear in the collection

• Supports additional methods:
hasPrevious(), previous() – for iterating backwards through a list
set(Object o) – to replace the current element with something else
add(Object o) – to insert an element after the current element

CSE143 Sp04 13-5

7/26/2004 (c) 2001-4, University of Washington 13-17

List Implementations
• ArrayList – internal data structure is an array

• Fast iterating
• Fast access to individual elements (get(int), set(int, Object))
• Slow add/remove except at the end of the list

• LinkedList – internal data structure is a linked list
• Fast iterating
• Slow access to individual elements (get(int), set(int, Object))
• Fast add/remove, even in the middle of the list

• We’ll dissect both forms of implementation shortly

7/26/2004 (c) 2001-4, University of Washington 13-18

interface Set extends Collection
• As in math, a Set is an unordered collection, with no

duplicate elements
• attempting to add an element already in the set does not

change the set

• Interface is same as Collection, but refines the
specifications
• The specs are in the form of comments

• interface SortedSet extends Set
• Same as Set, but iterators always return set elements in order
• Requires that elements be Comparable: implement the

compareTo(Object) method, returning a negative, 0, or positive
number to mean <=, ==, or >=, respectively

7/26/2004 (c) 2001-4, University of Washington 13-19

interface Map
• Collections of <key, value> pairs

• keys are unique, but values need not be

• Doesn't extend Collection, but does provide similar methods
size(), isEmpty(), clear()

• Basic methods for dealing with <key, value> pairs:
Object put(Object key, Object value) – add <key, value> to the map, replacing

the previous <key, value> mapping if one exists

void putAll(Map other) – put all <key, value> pairs from other into this map
Object get(Object key) – return the value associated with the given key, or null

if key is not present
Object remove(Object key) – remove any mapping for the given key

boolean containsKey(Object key) – true if key appears in a <key, value> pair
boolean containsValue(Object value) – true if value appears in a <key, value>

7/26/2004 (c) 2001-4, University of Washington 13-20

Maps and Iteration
• Map provides methods to view contents of a map as a collection:

Set keySet() – return a Set whose elements are the keys of this map
Collection values() – return a Collection whose elements are the values

contained in this map
[why is one a set and the other a collection?]

• To iterate through the keys or values or both, grab one of these
collections, and then iterate through that

Map map = …;
Set keys = map.keySet();
Iterator iter = keys.iterator();
while (iter.hasNext()) {

Object key = iter.next();
Object value = map.get(key);
… // do something with key and value

}

CSE143 Sp04 13-6

7/26/2004 (c) 2001-4, University of Washington 13-21

interface SortedMap extends Map
• SortedMap can be used for maps where we want to store

key/value pairs in order of their keys
• Requires keys to be Comparable, using compareTo

• Sorting affects the order in which keys and values are
iterated through
• keySet() returns a SortedSet

7/26/2004 (c) 2001-4, University of Washington 13-22

Interoperating
• It is relatively easy to shift between various collections
• One collection to another:

• addAll(Collection)

• Arrays to Lists:
static List Arrays.asList(array)

• Lists to Arrays:
• Object[] aList.toArray(List)

7/26/2004 (c) 2001-4, University of Washington 13-23

Preview of Coming Attractions
1. Study ways to implement these interfaces

• Array-based vs. link-list-based vs. hash-table-based vs. tree-
based

2. Compare implementations
• What does it mean to say one implementation is “faster”

than another?
• Basic complexity theory – O() notation

3. Use these and other data structures in our
programming

