
CSE143 12-1

8/8/2004 (c) 2001-4, University of Washington 12-1

CSE 143

Streams

Reading: Ch. 16

8/8/2004 (c) 2001-4, University of Washington 12-2

Overview
• Topics

• Data representation – bits and bytes
• Streams – communicating with the outside world
• Basic Java files
• Other stream classes

8/8/2004 (c) 2001-4, University of Washington 12-3

GREAT IDEAS IN COMPUTER
SCIENCE

REPRESENTATION VS. RENDERING

8/8/2004 (c) 2001-4, University of Washington 12-4

Data Representation
• Underneath it’s all bits (binary digits – 0/1)
• Byte – group of 8 binary digits

• Smallest addressable unit of memory

• Meaning depends on interpretation
• Non-negative base-10 integers represented as base-2 integers
• Characters formats include ASCII (1 byte) or Unicode (2 byte)

encodings
01000001 = integer 65 = ASCII ‘A’

Unicode 'A' is 0000000001000001
00111111 = integer 63 = ASCII ‘?’
00110110 = integer 54 = ASCII ‘6’

• But it’s still just bits

CSE143 12-2

8/8/2004 (c) 2001-4, University of Washington 12-5

Representation of Primitive Java Types
• Boolean – 1 byte (0 = false; 1 = true)
• Integer types
•byte – 1 byte (-128 to 127)
•short – 2 bytes (-32768 to 32767)
•int – 4 bytes (-2147483648 to 2147483647)
•long – 8 bytes (-9223372036854775808 to 9223372036854775807)

• Floating-point (real number) types
•float – 4 bytes; approx. 6 decimal digits precision, magnitude ~10±38

•double – 8 bytes; approx. 15 decimal digits precision, ~10±308

• Character type
•char – 2 bytes; Unicode characters w/decimal values 0 to 65535

8/8/2004 (c) 2001-4, University of Washington 12-6

Unicode

• International standard
• Java was first major language to adopt

• Intended to include all the world’s writing systems
• Characters are 2 bytes (16 bits)

• Given by Hex digits, e.g. 4EB9

• Specifications: www.unicode.org
• Unicode 3.1 (2001) introduced characters outside the

original 16-bit range
• Not yet well-supported

8/8/2004 (c) 2001-4, University of Washington 12-7

Input and Output
• Communicating with the outside world

Central
Processing

Unit

Main
Memory

Monitor

Network

Disk (Files)

Keyboard mouse

8/8/2004 (c) 2001-4, University of Washington 12-8

Streams
• Java model of communication: streams

• Sequence of data flowing from a source to a program, or from a
program to a destination (sink)

• Files are common sources and sinks
• Others: network sockets, interprogram communication, …

input
(source)

program
output
(sink)

stream stream

CSE143 12-3

8/8/2004 (c) 2001-4, University of Washington 12-9

Stream after Stream...
• Stream are a useful model for processing data along the way,

in a pipeline

input
file

(source)
decompressor

English-
to-

French
translator

output
file

(sink)
encryptor

8/8/2004 (c) 2001-4, University of Washington 12-10

Other Possible Kinds of Stream Converters
• Compression
• Encryption
• Filtering
• Translation
• Statistics gathering
• Security monitoring
• Routing/Merging
• Reducing Bandwidth (Size & Detail), e.g. of graphics or sound

• "lossy compression"

• Noise reduction, image sharpening, …
• Many, many more…

8/8/2004 (c) 2001-4, University of Washington 12-11

Streams vs. Files
• Many languages don’t make clear distinction

• Programmers, too!

• In Java:
• “file” is the collection of data, managed by the operating

system
• “stream” is a flow of data from one place to another

• A stream is an abstraction for data flowing from or to a
file, remote computer, URL, hardware device, etc.

8/8/2004 (c) 2001-4, University of Washington 12-12

Java Stream Library
• Huge variety of stream classes in java.io.*

• Some are data sources or sinks
• Others are converters that take data from a stream and

transform it somehow to produce a stream with different
characteristics

• Highly modular
• Lots of different implementations all sharing a common

interface; can be mixed and matched and chained easily
• Great OO design example, in principle
• In practice, it can be very confusing (simple I/O is messy)

(improved simple I/O coming in Java 1.5)

CSE143 12-4

8/8/2004 (c) 2001-4, University of Washington 12-13

Common Stream Processing Pattern
• Basic idea the same for input & output

// input // output
open a stream open a stream
while more data { while more data {

read & process next data write data to stream
} }
close stream close stream

8/8/2004 (c) 2001-4, University of Washington 12-14

Opening & Closing Streams
• Before a stream can be used it must be opened

• Create a stream object and connect it to source or destination
of the stream data

• Often done implicitly as part of creating stream objects

• When we’re done with a stream, it should be closed
• Cleans up any unfinished operations, then breaks the

connection between the program and the data
source/destination

8/8/2004 (c) 2001-4, University of Washington 12-15

Java Streams
• 2 major families of stream classes
• Byte streams – read/write byte values

• Corresponds to physical data – network and disk I/O streams
• Abstract classes: InputStream and OutputStream

• Character streams – read/write char values
• Added in Java 1.1
• Primary (Unicode) text input/output stream classes
• Abstract classes: Reader and Writer
• Footnote: System.in and System.out should be character streams, but are byte

streams for historical reasons (existed before Java 1.1, when character streams
were added, and remain unchanged to preserve backward compatibility)

8/8/2004 (c) 2001-4, University of Washington 12-16

Character Input Streams

CSE143 12-5

8/8/2004 (c) 2001-4, University of Washington 12-17

Byte Output Streams

8/8/2004 (c) 2001-4, University of Washington 12-18

Streams and Exceptions
• Many operations can throw IOException

• All input operations, in particular

• Normally throws a specific subclass of IOException
• depending on the actual error

• IOException is “checked”
• (Review question: what does a “checked” exception imply?)

8/8/2004 (c) 2001-4, University of Washington 12-19

Basic Reader/Writer Operations
• Reader

int read(); // return Unicode value of next character;
// return -1 if end-of-stream

int read(char[] cbuf); // read several characters into array;
// return -1 if end-of-stream

void close(); // close the stream

• Writer
void write(int c); // write character whose Unicode value is c
void write(char[] cbuf);// write array contents
void write(String s); // write string
void close(); // close the stream

• To convert Unicode int to char, or vice versa: use a cast

8/8/2004 (c) 2001-4, University of Washington 12-20

File Readers and Writers
• To read a (Unicode) text file (not a binary data file),

instantiate FileReader
• A subclass of Reader: implements read and close operations
• Constructors take a File object or the name of the file to open

and read from

• To write to a text file, instantiate FileWriter
• A subclass of Writer: implements write and close operations
• Constructors take a File object or the name of the file to

open/create and overwrite (can also append to an existing file
using a different constructor)

CSE143 12-6

8/8/2004 (c) 2001-4, University of Washington 12-21

Text Files vs Char Data

• Most of the world’s text files use 8-bit characters
• ASCII and variations of ASCII
• Internal to Java, char data is always 2-byte Unicode
• Java Reader deals only with Unicode

• Big problem: how to read and write normal (ASCII) text
files in Java?

• Solution: stream classes which adapts 8-bit chars to
Unicode
• Generally taken care of automatically – normally don’t need to

worry about the distinction

8/8/2004 (c) 2001-4, University of Washington 12-22

Copy a Text File, One Character at a Time
public void copyFile(String sourceFilename, String destFilename)

throws IOException {
FileReader inFile = new FileReader(sourceFilename);
FileWriter outFile = new FileWriter(destFilename);
int ch = inFile.read();
while (ch != -1) {

outFile.write(ch);
System.out.println("The next char is \'" + (char)ch + "\'"); // why \' ?
ch = inFile.read();

}
inFile.close();
outFile.close();

}

8/8/2004 (c) 2001-4, University of Washington 12-23

Interlude: Where is the File?

• In the previous slide, we opened the files with
FileReader inFile = new FileReader(sourceFilename);
FileWriter outFile = new FileWriter(destFilename);

• The file names could be complete paths like
“c:\Documents and Settings\J User\story.txt”, but…
• Not portable – different operating systems have different file

naming conventions
• Not convenient – what if we move the document?

• Would like to be able to use a name like “story.txt” to
open the file
• But if we do, where should we put the file?

8/8/2004 (c) 2001-4, University of Washington 12-24

File Directories

• When we use a simple file name
FileReader inFile = new FileReader(“story.txt”);

Java looks for that file in the “current directory”
• Current directory

• If the program is executed from a command-line prompt, it is
the current directory when the “java” command is entered

• If it is executed by DrJava, BlueJ, or other development tools, it
likely is not

• Is there a portable scheme way to find the file, assuming it’s in
the same directory or jar file as the main program .class file?

Yes – but you might not really want to have to know the details

CSE143 12-7

8/8/2004 (c) 2001-4, University of Washington 12-25

Finding Files (optional)

• The industrial-strength solution is to use a class loader
method that will search all directories it knows about
• Includes the directory or jar file containing the program’s .class

files, Java standard libraries, any additional libraries on the
classpath, etc.

• Ready?
URL url = getClass().getClassLoader().getResource(fileName);

• If url!=null, then it can be used to open the file (also works for
other resources like images and icons)

• Credit: Found on bluej.org; see their tip #10 for more details
• No, this won’t be on the test

8/8/2004 (c) 2001-4, University of Washington 12-26

Opening Files Using File Dialogs

• Easy, portable solution for our purposes is JFileDialog
• Lots (tons) of options, but basic use is quite simple

JFileChooser chooser = new JFileChooser();
int result1 = chooser.showOpenDialog(null);
File inFile = chooser.getSelectedFile();
System.out.println("Input file selected is " + inFile);
int result2 = chooser.showSaveDialog(null);
File outFile = chooser.getSelectedFile();
System.out.println("Output file selected is " + outFile);

• The int results of the show…Dialog methods indicate whether
the dialog was dismissed with ok, cancel, or something else

Should really check this before getting the selected file info

8/8/2004 (c) 2001-4, University of Washington 12-27

More Efficient I/O – BufferedReader/Writer
• Can improve efficiency by reading/writing many

characters at a time
• BufferedReader: a converter stream that performs this

chunking
• BufferedReader constructor takes any kind of Reader as an

argument -- can make any read stream buffered
• BufferedReader supports standard Reader operations -- clients

don't have to change to benefit from buffering
• Key addition: provides a portable readLine()

String readLine(); // return an entire line of input; or null if
// end-of-stream reached

[handles the complexities of how end-of-line is represented on different systems]

8/8/2004 (c) 2001-4, University of Washington 12-28

BufferedWriter
• BufferedWriter: a converter stream that performs

chunking on writes
• BufferedWriter constructor takes any kind of Writer as an

argument
• BufferedWriter supports standard Writer operations
• Also supports newLine()

void newLine(); // write an end-of-line character

CSE143 12-8

8/8/2004 (c) 2001-4, University of Washington 12-29

Copy a Text File, One Line at a Time
public void copyFile(String sourceFilename, String destFilename)

throws IOException {

BufferedReader inFile = new BufferedReader(new FileReader(sourceFilename));
BufferedWriter outFile = new BufferedWriter(new FileWriter(destFilename));

String line = inFile.readLine();
while (line != null) {

outFile.write(line);

outFile.newLine();
System.out.println("The next line is \"" + line + "\"");

line = inFile.readLine();
}
inFile.close();

outFile.close();
}

8/8/2004 (c) 2001-4, University of Washington 12-30

PrintWriter
• PrintWriter is another converter for a write stream

• Adds print & println methods for primitive types, strings,
objects, etc., just as we've used for System.out

• Does not throw exceptions (to make it more convenient to use)
• Optional 2nd boolean parameter in constructor to request

output be flushed (force all output to actually appear) after each
println

Useful for interactive consoles where messages need to appear right away

8/8/2004 (c) 2001-4, University of Washington 12-31

Copy a Text File, Using PrintWriter
public void copyFile(String srcFilename, String destFilename)

throws IOException {
BufferedReader inFile = new BufferedReader(new FileReader(srcFilename));
PrintWriter outFile =

new PrintWriter(new BufferedWriter(new FileWriter(destFilename)));
String line = inFile.readLine();
while (line != null) {

outFile.println(line);
System.out.println("The next line is \"" + line + "\"");
line = inFile.readLine();

}
inFile.close();
outFile.close();

}

8/8/2004 (c) 2001-4, University of Washington 12-32

StringReader and StringWriter
• Strings as streams(!)
• StringReader: construct character stream from a String

StringReader inStream = new StringReader("the source");
// could now write inStream to a file, or somewhere else

• StringWriter: write stream to a String
StringWriter outStream = new StringWriter();
// now write onto outStream, using outStream.write(…), outStream.print(…), etc.
String theResult = outStream.toString();

CSE143 12-9

8/8/2004 (c) 2001-4, University of Washington 12-33

Binary Streams
• For processing binary data (encoded characters,

executable programs, other low-level data), use
InputStreams and OutputStreams

• Operations are similar to Reader and Writer operations
• Replace char with byte in read; no write(String)

• Many analogous classes to Readers and Writers:
• FileInputStream, FileOutputStream
• BufferedInputStream, BufferedOutputStream
• ByteArrayInputStream, ByteArrayOuputStream
• ObjectInputStream, ObjectOutputStream -- read & write whole

objects!

8/8/2004 (c) 2001-4, University of Washington 12-34

Conversion from Binary to Text Streams
• InputStreamReader: creates a Reader from an

InputStream
// System.in is of type InputStream
Reader inStream = new InputStreamReader(System.in);
// now can treat it nicely as a character stream

• OutputStreamWriter: creates a Writer from an
OutputStream

// System.out is of type OutputStream
Writer outStream = new OutputStreamWriter(System.out);
// now can treat it nicely as a character stream

8/8/2004 (c) 2001-4, University of Washington 12-35

Network Streams
• Import java.net.*
• Use URL to create a name of something on the web
• Use openStream() method to get a InputStream on the contents of

the URL
URL url = new URL("http://www.cs.washington.edu/index.html");
InputStream inStream = url.openStream();
… // now read from inStream

• Use openConnection() and URLConnection methods to get more
control

URLConnection connection = url.openConnection();
OutputStream outStream = connection.getOutputStream();
… // now write to outStream (assuming target url allows writing!)

• Socket class for even more flexible network reading & writing

8/8/2004 (c) 2001-4, University of Washington 12-36

Summary

• Java stream libraries
• Comprehensive, flexible, easy to compose multiple streams in

a chain
• But not simple to do simple things

• What to take away
• BufferedReader and readLine() for text input
• PrintWriter and print()/println() for text output
• JFileChooser to select files when opening
• close() when done

