
CSE143 Sp04 08-1

4/19/2004 (c) 2001-4, University of Washington 08-1

CSE 143 Java

Event-Driven Programming

Reading: Chs. 17-18, particularly Sec. 17.4

4/19/2004 (c) 2001-4, University of Washington 08-2

Overview
• Topics

• Event-driven programming (review)
• Events in Java
• Event listeners
• Buttons
• Mice

4/19/2004 (c) 2001-4, University of Washington 08-3

Event-Driven Programming (Review)
• Idea: program initializes itself then accepts events in whatever

random order they occur
• Kinds of events

• Mouse move/drag/click, Keyboard, Touch screen, Joystick, game controller
• Window resized or components changed
• Activity over network or file stream
• Sensors, lab experiments
• Timer interrupt

• First demonstrated in the 1960s(!);
• Major developments at Xerox PARC in the 1970s (Alto

workstation, Smalltalk, Xerox Star)
• Appeared outside research community in Apple Macintosh (1984)

4/19/2004 (c) 2001-4, University of Washington 08-4

Events in Java
• An object that is interested in an event must be

registered with the object (user interface component or
other) that generates the event
• An object may be registered to listen for many kinds of events

generated by many other objects
• There may be many listeners registered to listen for particular

kinds of events from a single object
• When an event occurs, all registered listeners are

notified by calling the appropriate method in the listener
objects

(Just like the model/viewer architecture)

4/19/2004 (c) 2001-4, University of Washington 08-5

Event Objects
• An event is represented in Java by an event object

• AWT/Swing events are subclasses of AWTEvent. Examples:
ActionEvent – button pressed
KeyEvent – keyboard input
MouseEvent – mouse move/drag/click/button press or release

• Event objects contain information about the event
• User interface object that triggered the event
• Other information appropriate for the event. Examples:

ActionEvent – text string describing button (if from a button)
MouseEvent – mouse coordinates of the event

• All in java.awt.event
• Need to import this to handle events

4/19/2004 (c) 2001-4, University of Washington 08-6

Event Listeners
• An event listener must implement the appropriate

interface for the events it wishes to receive
• ActionListener, KeyListener, MouseListener (buttons),

MouseMotionListener (move/drag), others …
• When the event occurs, the appropriate method from the

interface is called
• actionPerformed, keyPressed, keyReleased, keyTyped,

mouseClicked, MouseDragged, etc. etc. etc.
Reminder – because these are part of an Interface, you can't change their
signatures

• An event object describing the event is supplied as a parameter
to the receiving method

CSE143 Sp04 08-2

4/19/2004 (c) 2001-4, University of Washington 08-7

A First Example – Simple Button Listener
• Idea: Create a JPanel extension with a single button in it
• Create a listener object to receive clicks on the button

and print a message when events happen
• Register the listener object with the button

4/19/2004 (c) 2001-4, University of Washington 08-8

Button Listener
• Simplest part of setup
• Need to implement ActionListener interface and

actionPerformed method declared in that interface
• Doesn’t do much – just gets the action command string

from the event object e and prints it
public class ButtonListener implements ActionListener {
/** Respond to events generated by the button. */
public void actionPerformed(ActionEvent e) {
System.out.println(e.getActionCommand());

}
}

4/19/2004 (c) 2001-4, University of Washington 08-9

Button Panel
• This panel contains the button; when constructed, it

• creates the button and a listener
• adds the button to the panel
• registers the listener with the button

public class ButtonDemo extends JPanel {
/** Construct a new ButtonDemo object */
public ButtonDemo() {
JButton button = new JButton("Hit me!");
button.setActionCommand("OUCH!"); // optional - default is button text
button.addActionListener(new ButtonListener());
add(button);

}

4/19/2004 (c) 2001-4, University of Washington 08-10

Identifying the Button
• Only one button in this example, but what if the listener

was registered for ActionEvents from multiple buttons?
• Answer: use method getActionCommand() on the event

object – returns a string
• Default value is text in the button, but can set it with

setActionCommand on the button object
(Good idea so program won’t break if button text changes later – maybe by
translating to another language)

4/19/2004 (c) 2001-4, University of Washington 08-11

Second Example: Mice
• A mouse generates an event every time it twitches

• Every move, every button press, …
• Sometimes it makes sense to handle every mouse

moved/dragged event; other times it’s just noise
• Key interfaces associated with mouse events:

• MouseListener – click, press, release, enter region, exit region
• MouseMotionListener – mouse moved or dragged

• MouseListener and MouseMotionListener methods
receive a MouseEvent parameter
• Contents: location of the mouse event, which modifier keys

were held down, which buttons were pressed, etc.

4/19/2004 (c) 2001-4, University of Washington 08-12

Example: Mouse Clicks
public class Mouser extends JPanel implements MouseListener {

/** Constructor – register this object to listen for mouse events */
Mouser() {

addMouseListener(this);
}
/** Process mouse click */
public void mouseClicked(MouseEvent e) {

System.out.println(“mouse click at x = ” + e.getX() + “ y = “ e.getY());
}

•
•Also need to implement the other events in MouseListener
• Note that this JPanel extension registers itself to listen for the mouse events

–Could be done in other ways, e.g. have separate code to create both the panel and the
listener and connect them together

CSE143 Sp04 08-3

4/19/2004 (c) 2001-4, University of Washington 08-13

Interactive Bouncing Balls
• Idea: add some interaction to the bouncing ball

simulation/animation
• First change: add buttons in a panel at the bottom to

pause and resume the simulation
• Steps

• Create a new JPanel containing the buttons
• Create a second JPanel BallSimControl containing the original

graphics view in the middle and the button JPanel beneath
• Add this to the top-level JFrame

4/19/2004 (c) 2001-4, University of Washington 08-14

Button Panel
• In BallSimControl (an extended JPanel) constructor

JButton pause = new JButton("pause");
JButton resume = new JButton("resume");
JButton stop = new JButton("stop");
JPanel buttons = new JPanel();
buttons.add(pause);
buttons.add(resume);
buttons.add(stop);
add(buttons, BorderLayout.SOUTH);

4/19/2004 (c) 2001-4, University of Washington 08-15

Handling Button Clicks
• Who should handle the pause/resume button clicks?

• Not the SimModel object – shouldn’t know about views
• New class: SimButtonListener
• Code in BallSimControl

// set up listener for the buttons
buttonListener = new SimButtonListener(…);
pause.addActionListener(buttonListener);
resume.addActionListener(buttonListener);
stop.addActionListener(buttonListener);

4/19/2004 (c) 2001-4, University of Washington 08-16

Listener Object
class SimButtonListener implements ActionListener {

private SimModel world; // the model
/** Process button clicks by turning the simulation on and off */
public void actionPerformed(ActionEvent e) {

if (e.getActionCommand().equals("pause")) {
world.pause();

} else if (e.getActionCommand().equals("resume")) {
world.resume();

} else if (e.getActionCommand().equals("stop")) {
world.stop();

}
}

}
• Question: How does the listener know what SimModel object to notify?
• Answer: store a reference to the model in an instance variable

4/19/2004 (c) 2001-4, University of Washington 08-17

Interactive Bouncing Balls (cont.)
• Second change: when the mouse is clicked in the

window, add a new bouncing ball with random size,
direction, and color

• Steps
• Create a SimMouseListener class to listen for the clicks
• Register a listener object to listen for clicks on the view pane

• Same complications as with the buttons – the listener
needs to know the model it interacts with

4/19/2004 (c) 2001-4, University of Washington 08-18

Initializing the Mouse Listener
• In BallSimControl

// set up listener for mouse clicks on the view
mouseListener = new SimMouseListener(…);
viewPane.addMouseListener(mouseListener);

CSE143 Sp04 08-4

4/19/2004 (c) 2001-4, University of Washington 08-19

Mouse Listener Object
/** Process mouse click by adding a new ball to the simulation at the location
* of the click with a random color, size, and velocity */
public void mouseClicked(MouseEvent e) {
world.add(randomBall(e.getX(), e.getY()));

}

/** Create a new ball with random color, size, and velocity */
public Ball randomBall(int x, int y) {
return new Ball(…);

}

4/19/2004 (c) 2001-4, University of Washington 08-20

Summary So Far
• Event-driven programming
• Event objects
• Event listeners – anything that implements the relevant

interface
• Must register with object generating events as a listener

• Listener objects – handle events by passing them along
to other objects

4/19/2004 (c) 2001-4, University of Washington 08-21

Evaluation
• So far, we’ve implemented listeners as instances of

separate stand-alone classes
• Issues

• Relatively simple, fairly easy to understand, but
• Somewhat messy to provide listener with access to necessary

data (passing around all those references to the SimModel)
• Creates unnecessary top-level classes
• Also, had to implement all MouseListener methods even

though we only wanted to process clicks

4/19/2004 (c) 2001-4, University of Washington 08-22

Coming Attractions
• Solutions

• Event adapter classes – empty implementations of all methods
in an interface; extend and override (only) what you want

• Nested (inner) classes – which can be private
• Anonymous inner classes – create an extended adapter class

without having to even give it a name

