CSE 143 Java Models and Views Reading: Ch. 18 4/13/2004 (c) 2001-4, University of Washington 07-1

Overview

- Topics
 - · Displaying dynamic data
 - · Model-View-Controller (MVC)
 - · Observer Pattern

4/42/200

(c) 2001-4, University of Washington

Review: Repainting the Screen

- GUI components such as JPanels can draw on a Graphics context by overriding paintComponent
- Problem: Drawings aren't permanent need to be refreshed
- · Window may get hidden, moved, minimized, etc.
- Even components like buttons, listboxes, file choosers etc. also must render themselves
 - Seldom a reason to override paint methods for such components
 - There are indirect but more convenient ways to change the rendering e.g., changing the text of a label

4/13/2004

(c) 2001-4, University of Washington

07-3

Review: Using paintComponent

- Every Swing Component subclass has a *paintComponent* method Called *automatically* by the system when component needs redrawing
- Program can override paintComponent to get access to the Graphics object and draw whatever is desired
- To request the image be updated, send it a repaint() message
 paintComponent() is eventually called
- $\ensuremath{^{\bullet}}$ "Render" is the word for producing the actual visual image
- Rendering may take place at multiple levels
- Ultimate rendering is done by low-level software and/or hardware

4/13/2004

(c) 2001-4, University of Washington

07.4

07-2

Drawing Based on Stored Data

- Problem: how does paintComponent() know what to paint?
 What is painted might change over time, too
- · Answer: we need to store the information somewhere
- · Where?
 - Store detailed graphical information in the component Lines, shapes, colors, positions, etc.
 Probably in an instance variable, accessible to paintComponent
 - Store underlying information in the component
 - Store objects that know how to paint themselves
 - Store references to the underlying data and query it as needed data object returns information in a form that might differ from the underlying data paintComponent translates the data into graphics
- All of these approaches can be made to work. What is best?

4/13/2004

(c) 2001-4, University of Washington

07-5

Model-View-Controller Pattern

- Idea: want to separate the underlying data from the code that renders it
 - · Good design because it separates issues, reduces coupling
- · Allows multiple views of the same data
- · Model-View-Controller pattern
- Originated in the Smalltalk community in 1970's
- Used throughout Swing
 Although not always obvious on the surface
- · Widely used in commercial programming
- · Recommended practice for graphical applications

4/13/2004

(c) 2001-4, University of Washington

07-

CSE143 Sp04 07-1

MVC Overview

Model

· Contains the "truth" - data or state of the system

View

 Renders the information in the model to make it visible to users in desired formats

Graphical display, dancing bar graphs, printed output, network stream....

Controller

- · Reacts to user input (mouse, keyboard) and other events
- · Coordinates the models and views

4/13/200

(c) 2001-4, University of Washington

07-7

MVC Interactions and Roles (1)

Model

- · Maintains the data in some internal representation
- · Maintains a list of interested viewers
- Notify viewers when model has changed and view update might be needed
- Supplies data to viewers when requested Possibly in a different representation
- Generally should not know details of the display or user interface details

4/13/2004

(c) 2001-4, University of Washington

MVC Interactions and Roles (2)

· View

- · Maintains details about the display environment
- · Gets data from the model when it needs to
- Renders data when requested (by the system or the controller, etc.; in Java, often implements paintComponent to do this)
- · May catch user interface events and notify controller

· Controller

- · Intercepts and interprets user interface events
- · Routes information to models and views

4/13/2004

(c) 2001-4, University of Washington

07-9

MVC vs MV

- · Separating Model from View...
 - · ...is just good, basic object-oriented design
 - · usually not hard to achieve, with forethought
- Separating the Controller from the View is a bit less clear-cut
- Often the Controller and the View are naturally closely related buttons or mouse clicks on a panel in a JFrame, for instance
- · Controller and view frequently use GUI Components
- OK to fold view and controller together *when it makes sense*Fairly common in modern user interface packages

4/13/2004

(c) 2001-4, University of Washington

07.10

07-8

Implementation Note

- Model, View, and Controller are design concepts, not class names
- · Might be more than one class involved in each
- · Can have multiple views and controllers (only 1 model)
- The View might involve a number of different GUI components
- · MVC might apply at multiple levels in a system
 - · A Controller might use a listbox to interact with a user.
 - That listbox is part of the Controller
 - However, the listbox itself has a Model and a View, and possibly a Controller

4/13/2004

(c) 2001-4, University of Washington

07-11

Observer Pattern

- The MVC design is a particular instance of a more general idea: the "observer" pattern
- Key idea: object that might change keeps a list of interested observers and notifies them when something happens
- Observers can react however they like
- Support in the Java library: class java.util.Observer and interface java.util.Observable
- Model implements Observable
- Observers register themselves with Observable objects and are notified when they change
- Use this if you want, but can be overkill for simple projects
 CSE143 demo programs do this by hand for clarity

4/13/2004

(c) 2001-4, University of Washington

07-12

CSE143 Sp04 07-2