
CSE143 Sp04 07-1

4/13/2004 (c) 2001-4, University of Washington 07-1

CSE 143 Java

Models and Views

Reading: Ch. 18

4/13/2004 (c) 2001-4, University of Washington 07-2

Overview
• Topics

• Displaying dynamic data
• Model-View-Controller (MVC)
• Observer Pattern

4/13/2004 (c) 2001-4, University of Washington 07-3

Review: Repainting the Screen
• GUI components such as JPanels can draw on a

Graphics context by overriding paintComponent
• Problem: Drawings aren’t permanent – need to be

refreshed
• Window may get hidden, moved, minimized, etc.

• Even components like buttons, listboxes, file choosers
etc. also must render themselves
• Seldom a reason to override paint methods for such

components.
• There are indirect but more convenient ways to change the

rendering – e.g., changing the text of a label
4/13/2004 (c) 2001-4, University of Washington 07-4

Review: Using paintComponent
• Every Swing Component subclass has a paintComponent method

• Called automatically by the system when component needs redrawing
• Program can override paintComponent to get access to the

Graphics object and draw whatever is desired
• To request the image be updated, send it a repaint() message

• paintComponent() is eventually called
• "Render" is the word for producing the actual visual image

• Rendering may take place at multiple levels
• Ultimate rendering is done by low-level software and/or hardware

4/13/2004 (c) 2001-4, University of Washington 07-5

Drawing Based on Stored Data
• Problem: how does paintComponent() know what to paint?

• What is painted might change over time, too
• Answer: we need to store the information somewhere
• Where?

• Store detailed graphical information in the component
Lines, shapes, colors, positions, etc.
Probably in an instance variable, accessible to paintComponent

• Store underlying information in the component
• Store objects that know how to paint themselves
• Store references to the underlying data and query it as needed

data object returns information in a form that might differ from the underlying data
paintComponent translates the data into graphics

• All of these approaches can be made to work. What is best?

4/13/2004 (c) 2001-4, University of Washington 07-6

Model-View-Controller Pattern
• Idea: want to separate the underlying data from the code

that renders it
• Good design because it separates issues, reduces coupling
• Allows multiple views of the same data

• Model-View-Controller pattern
• Originated in the Smalltalk community in 1970’s
• Used throughout Swing

Although not always obvious on the surface
• Widely used in commercial programming
• Recommended practice for graphical applications

CSE143 Sp04 07-2

4/13/2004 (c) 2001-4, University of Washington 07-7

MVC Overview
• Model

• Contains the “truth” – data or state of the system
• View

• Renders the information in the model to make it visible to users
in desired formats

Graphical display, dancing bar graphs, printed output, network stream….

• Controller
• Reacts to user input (mouse, keyboard) and other events
• Coordinates the models and views

4/13/2004 (c) 2001-4, University of Washington 07-8

MVC Interactions and Roles (1)
• Model

• Maintains the data in some internal representation
• Maintains a list of interested viewers
• Notify viewers when model has changed and view update might

be needed
• Supplies data to viewers when requested

Possibly in a different representation
• Generally should not know details of the display or user

interface details

4/13/2004 (c) 2001-4, University of Washington 07-9

MVC Interactions and Roles (2)
• View

• Maintains details about the display environment
• Gets data from the model when it needs to
• Renders data when requested (by the system or the controller,

etc.; in Java, often implements paintComponent to do this)
• May catch user interface events and notify controller

• Controller
• Intercepts and interprets user interface events
• Routes information to models and views

4/13/2004 (c) 2001-4, University of Washington 07-10

MVC vs MV
• Separating Model from View...

• ...is just good, basic object-oriented design
• usually not hard to achieve, with forethought

• Separating the Controller from the View is a bit less
clear-cut

• Often the Controller and the View are naturally closely
related – buttons or mouse clicks on a panel in a
JFrame, for instance
• Controller and view frequently use GUI Components
• OK to fold view and controller together when it makes sense

Fairly common in modern user interface packages

4/13/2004 (c) 2001-4, University of Washington 07-11

Implementation Note
• Model, View, and Controller are design concepts, not

class names
• Might be more than one class involved in each
• Can have multiple views and controllers (only 1 model)
• The View might involve a number of different GUI

components
• MVC might apply at multiple levels in a system

• A Controller might use a listbox to interact with a user.
• That listbox is part of the Controller
• However, the listbox itself has a Model and a View, and

possibly a Controller

4/13/2004 (c) 2001-4, University of Washington 07-12

Observer Pattern
• The MVC design is a particular instance of a more general idea:

the “observer” pattern
• Key idea: object that might change keeps a list of interested

observers and notifies them when something happens
• Observers can react however they like

• Support in the Java library: class java.util.Observer and interface
java.util.Observable
• Model implements Observable
• Observers register themselves with Observable objects and are notified

when they change
• Use this if you want, but can be overkill for simple projects

CSE143 demo programs do this by hand for clarity

