
CSE143 Sp04 03-1

7/6/2004 (c) 2001-3, University of Washington 03-1

CSE 143 Java

Interfaces

Reading: Ch. 15.1.3

7/6/2004 (c) 2001-3, University of Washington 03-2

A Problem – Object Model for a Simulation

• Suppose we are designing the classes for a simulation
game like the Sims, or Sim City

• We might want to model
• People (office workers, police/firemen, politicians, …)
• Pets (cats, dogs, ferrets, lizards, …)
• Vehicles (cars, trucks, buses, …)
• Physical objects (buildings, streets, traffic lights, …)

• Object model – use inheritance
• Base classes for People, Pets, Vehicles, PhysicalThings, …
• Extended classes for specific kinds of things (Cat extends Pet,

Dog extends Pet, Truck extends Vehicle…)

7/6/2004 (c) 2001-3, University of Washington 03-3

Making it Tick

• A time-based simulation has some sort of clock that ticks
regularly

• On each tick, every object in the simulation needs to, for instance,
update its state, maybe redraw itself, …

• We would like to write methods in the simulation engine that can
work with any object in the simulation

/** update the state of simulation object thing for one clock tick */
public void updateState(??? thing) {

thing.tick();
thing.redraw();

}

• Question: What is the type of parameter thing in this method?

7/6/2004 (c) 2001-3, University of Washington 03-4

Type Compatibility

• We want to be able to write something like
public void updateState(SimThing thing) { … }

where “SimThing” is a type that is compatible with Cats,
Cars, People, Buildings. How?

• Could create an additional superclass SimThing and
have People, Pets, Vehicles, PhysicalThings, …, all
extend it, but:
• People, Pets, etc. don’t have a real “is-a” relationship
• What if we wanted to have other polymorphic methods that, for

example, only apply to breathing things?
• Deep inheritance hierarchies are brittle, hard to modify

CSE143 Sp04 03-2

7/6/2004 (c) 2001-3, University of Washington 03-5

Solution – Interfaces

• We want a way to create a type SimThing independently
of the simulation actor class hierarchies, then tag each
of those classes so they can be treated as SimThings

• Solution: create a Java interface to define type SimThing
• Declare that the appropriate classes implement this

interface

7/6/2004 (c) 2001-3, University of Washington 03-6

SimThing Interface

• Interface declaration
/** Interface for all objects involved in the simulation */
public interface SimThing {

public void tick();
public void redraw();

}

• Class declaration using the interface
/** Base class for all Pets in the simulation */
public class Pet implements SimThing {

/** tick method for Pets */
public void tick() { … }
/** redraw method for Pets */
public void redraw() { … }
…

}

7/6/2004 (c) 2001-3, University of Washington 03-7

Interfaces and Implements
• A Java interface declares a set of method signatures

• i.e., says what behavior exists
• Does not say how the behavior is implemented

i.e., does not give code for the methods

• Does not describe any state (but may include “final” constants)

• A concrete class that implements an interface
• Contains “implements InterfaceName” in the class declaration
• Must provide implementations (either directly or inherited from

a superclass) of all methods declared in the interface

• An abstract class can also implement an interface
• Can optionally have implementations of some or all interface

methods

7/6/2004 (c) 2001-3, University of Washington 03-8

interface I
method signatures of

I, without code; no
instance variables

B's stuff

concrete
class C

methods of I,
including code

other methods,
instance

variables of C

CSE143 Sp04 03-3

7/6/2004 (c) 2001-3, University of Washington 03-9

Implements vs. Extends

• Both describe an “is-a” relation
• If B implements interface A, then B inherits the

(abstract) method signatures in A
• If B extends class A, then B inherits everything in A,

which can include method code and instance variables
as well as abstract method signatures

• Sometimes people distinguish “interface inheritance”
from “code” or “class inheritance”
• Specification vs implementation
• Informally, “inheritance” is sometimes used to talk about the

superclass/subclass “extends” relation only

7/6/2004 (c) 2001-3, University of Washington 03-10

Classes, Interfaces, and Inheritance

• A class
• Extends exactly one other class (which defaults to Object if

“extends …” does not appear in the class definition)
• Implements zero or more interfaces (no limit)

• Interfaces can also extend other interfaces
(superinterfaces)

Interface ScaryThing extends SimThing { … }

• Mostly found in larger libraries and systems
• A concrete class implementing an extended interface must

implement all methods in that interface and (transitively) all
interfaces that it extends

7/6/2004 (c) 2001-3, University of Washington 03-11

What is the Type of an Object?

• Every interface or class declaration defines a new type
• An instance of a class named Example has all of these

types:
• The named class (Example)
• Every superclass that Example extends directly or indirectly

(including Object)
• Every interface (including superinterfaces) that Example

implements

• The instance can be used anywhere one of its types is
appropriate
• As variables, as parameters and arguments, as return values

7/6/2004 (c) 2001-3, University of Washington 03-12

Benefits of Interfaces

• May be hard to see in small systems, but in large ones…
• Better model of application domain

• Avoids inappropriate uses of inheritance to get polymorphism

• More flexibility in system design
• Can isolate functionality in separate interfaces – better

cohesion, less tendency to create monster “kitchen sink”
interfaces or classes

• Allows multiple abstractions to be mixed and matched as
needed

CSE143 Sp04 03-4

7/6/2004 (c) 2001-3, University of Washington 03-13

Interfaces vs Abstract Classes

• Both of these specify a type
• Interface

• Pure specification
• No method implementation (code), no instance variables, no

constructors

• Abstract class
• Method specification plus, optionally:

Partial or full default method implementation
Instance variables
Constructors (called from subclasses using super)

• Which to use?
7/6/2004 (c) 2001-3, University of Washington 03-14

Abstract Classes vs. Interfaces

Abstract Class Advantages
• Can include instance variables
• Can include a default (partial or

complete) implementation, as a
starter for concrete subclasses

• Wider range of modifiers and
other details (static, etc.)

• Can specify constructors, which
subclasses can invoke with super

• Interfaces with many method
specifications are tedious to
implement (implementations can’t
be inherited)

Interface Advantages
• A class can extend at most one

superclass (abstract or not)
• By contrast, a class (and an

interface) can implement any
number of super-interfaces

• Helps keep state and behavior
separate

• Provides fewer constraints on
algorithms and data structures

7/6/2004 (c) 2001-3, University of Washington 03-15

A Design Strategy
• These rules of thumb seem to provide a nice balance for

designing software that can evolve over time:
(Might be overkill for some CSE 143 projects)

• Any major type should be defined in an interface
• If it makes sense, provide a default implementation of the

interface – can be abstract or concrete
• Client code can choose to either extend the default

implementation, overriding methods that need to be changed,
or implement the complete interface directly (needed if the
class already has a specified superclass)

• This pattern occurs frequently in the standard Java
libraries

