
CSE143 Sp04 02-1

7/6/2004 (c) 2001-4, University of Washington 02-1

CSE 143

Object & Class Relationships – Inheritance

Reading: Ch. 10

7/6/2004 (c) 2001-4, University of Washington 02-2

Relationships Between Real Things
• Man walks dog
• Dog strains at leash
• Dog wears collar
• Man wears hat
• Girl feeds dog
• Girl watches dog
• Dog eats food
• Man holds briefcase
• Dog bites man

7/6/2004 (c) 2001-4, University of Washington 02-3

Common Relationship Patterns
• A few types of relationships occur extremely often

• IS-A: a supervisor is an employee (and a taxpayer and a sister
and a skier and

• HAS-A: An airplane has seats (and lights and wings and
engines and...

• These are so important and common that programming
languages have special features to model them
• Some of these you know (maybe without knowing you know)
• Some of them we’ll learn about in this course, starting now,

with inheritance.

7/6/2004 (c) 2001-4, University of Washington 02-4

Employee

Supervisor

is-a

Airplane

has-a

wings seats

CSE143 Sp04 02-2

7/6/2004 (c) 2001-4, University of Washington 02-5

Composition: "has a"
• Classes and objects can be related in several ways
• One way: composition, aggregation, or reference
• Dog has-a owner, dog has-a age, dog has-a name, etc.
• In java: one object refers to another object

• via an instance variable

public class Dog {
private String name;/ // this dog's name
private int age; // this dog's age
private Person owner; // this dog's owner
private Dog mother, father; // this dog’s parents
private Color coatColor; // etc, etc.

}

• Composition: One can think of the dog as "composed" of various
objects

7/6/2004 (c) 2001-4, University of Washington 02-6

Picturing the Relationships

• Dog Fido; //might be 6 years old, brown, owned by
Marge, etc.

• Dog Apollo; //might be 2 years old, no owner, etc.
• In Java, it is a mistake to think of the parts of an object

as being "inside" the whole.

name
age

ownercolor

Fido

7/6/2004 (c) 2001-4, University of Washington 02-7

Drawing Names and Objects

• Names and objects
• Very different things!

• In general, names refer to objects
• Objects can refer to other objects using instance variable

names

Fido (a name)
an object of

type Dog

refers to age

mother

6
another

object of type
Dog

7/6/2004 (c) 2001-4, University of Washington 02-8

Drawing Names and Objects

• A name might not refer to any object
• One object might have more than one name

• i.e., might be more than one reference to it

• An object might not have any name
• “anonymous”

Fido

refers to
age

mother

6
another

object of type
Dog

MyDoggie

Fifi

anonymous
object of type

Dog

CSE143 Sp04 02-3

7/6/2004 (c) 2001-4, University of Washington 02-9

Specialization – "is a"
• Specialization relations can form classification

hierarchies
• cats and dogs are special kinds of mammals;

mammals and birds are special kinds of animals;
animals and plants are special kinds of living things

• lines and triangles are special kinds of polygons;
rectangles, ovals, and polygons are special kinds of shapes

• Keep in mind: Specialization is not the same as
composition
• A cat "is-a" animal vs. a cat "has-a" owner

7/6/2004 (c) 2001-4, University of Washington 02-10

"is-a" in Programming
• Classes (and interfaces) can be related via specialization

• one class/interface is a special kind of another class/interface
• Rectangle class is a kind of Shape

• The general mechanism for representing “is-a” is
inheritance

7/6/2004 (c) 2001-4, University of Washington 02-11

Inheritance
• Java provides direct support for “is-a” relations

• likewise C++, C#, and other object-oriented languages

• Class inheritance
• one class can inherit from another class,

meaning that it's is a special kind of the other

• Terminology
• Original class is called the base class or superclass
• Specializing class is called the derived class or subclass

7/6/2004 (c) 2001-4, University of Washington 02-12

Inheritance: The Main Programming Facts
• Subclass inherits all instance variables and methods of

the inherited class
• All instance variables and methods of the superclass are

automatically part of the subclass
• Constructors are a special case (later)

• Subclass can add additional methods and instance
variables

• Subclass can provide different versions of inherited
methods

• Subclass can provide different versions of inherited
instance variables, but it’s generally poor practice
• Don’t do it

CSE143 Sp04 02-4

7/6/2004 (c) 2001-4, University of Washington 02-13

A

B

A's stuff

B's stuff

A's stuff

B's stuff

B extends A

A's stuff is
automatically

part of B

7/6/2004 (c) 2001-4, University of Washington 02-14

Design Example: Employee Database

• Suppose we want to generalize our Employee example
to handle a more realistic situation

• Application domain – kinds of employees
• Hourly
• Exempt
• Boss

7/6/2004 (c) 2001-4, University of Washington 02-15

Design Process – Step 1

• Think up a class to model each “kind” of thing

7/6/2004 (c) 2001-4, University of Washington 02-16

Design Process – Step 2

• Identify state/properties of each kind of thing

CSE143 Sp04 02-5

7/6/2004 (c) 2001-4, University of Washington 02-17

Design Process – Step 3

• Identify actions (behaviors) that each kind of thing can
do

7/6/2004 (c) 2001-4, University of Washington 02-18

Key Observation

• Many kinds of employees share common properties and
actions

• We can factor common properties into a base class and
use inheritance to create variations for specific classes

7/6/2004 (c) 2001-4, University of Washington 02-19

Generic Employees
/** Representation of a generic employee. */
public class Employee {

// instance variables
private String name; // employee name
private int id; // employee id number
/** Construct a new employee with the give name and id number… */
public Employee(String name, int id) {

this.name = name;
this.id = id;

}
/** Return the name of this employee */
public String getName() { return name; }
…
/** Return the pay earned by this employee */
public double getPay() { return 0.0; } // ???
…

}

7/6/2004 (c) 2001-4, University of Washington 02-20

Specific Kinds of Employees

• Hourly Employee
public class HourlyEmployee

extends Employee {
// additional instance variables
private double hours; // hours worked

private double hourlyPay; // pay rate

/** Return pay earned */
public double getPay() {

return hours * hourlyPay;

}
…

}

• Exempt Employee
public class ExemptEmployee

extends Employee {
// additional instance variable
private double salary; // weekly pay

/** Return pay earned */

public double getPay() {
return salary;

}

…
}

CSE143 Sp04 02-6

7/6/2004 (c) 2001-4, University of Washington 02-21

Employee
Employee

stuff

HourlyEmployee

Employee
stuff

HourlyEmp.
stuff

Employee
stuff

ExemptEmp.
stuff

In Pictures

ExemptEmployee

7/6/2004 (c) 2001-4, University of Washington 02-22

More Java
If class D extends B (inherits from) B...
• Class D inherits all methods and fields from class B
• But... "all" is too strong

• constructors are not inherited
though there is a way to use superclass constructors

• same is true of static methods and static fields
although these static members are still available in inherited part of the object –
technicalities we will look at later

• Class D may contain additional (new) methods and
fields
• But has no way to delete any

7/6/2004 (c) 2001-4, University of Washington 02-23

Never to be Forgotten
If class D extends (inherits) from B...

• a D can do anything that a B can do (because of inheritance)
• a D can be used in any context where a B is appropriate

Every object of type D is
also an object of type B

7/6/2004 (c) 2001-4, University of Washington 02-24

Interfaces: Quick Review

• Java interfaces also model is-a relationships
• A bit more abstract than full inheritance
• Example: the Comparable interface means that an object

has a compareTo method
• Syntax: classname implements interfacename {...
• Interfaces also define types
• A class can extend another class and at the same time

implement one or more interfaces

CSE143 Sp04 02-7

7/6/2004 (c) 2001-4, University of Washington 02-25

Method Overriding
• If class D extends B, class D may provide an alternative

or replacement implementation of any method it would
otherwise inherit from B

• The definition in D is said to override the definition in B
• An overriding method cannot change the number of

arguments or their types, or the type of the result [why?]
• can only provide a different body (implementation)

• Can you override an instance variable?
• Not exactly... ask after class if you're really curious

7/6/2004 (c) 2001-4, University of Washington 02-26

Polymorphism
• Polymorphic: "having many forms"
• A variable that can refer to objects of different types is

said to be polymorphic
• Methods with polymorphic arguments are also said to be

polymorphic
public void printPay(Employee e) {

System.out.println(e.getPay());
}

• Polymorphic methods can be reused for many types

7/6/2004 (c) 2001-4, University of Washington 02-27

Static and Dynamic Types
• With polymorphism, we can distinguish between

• Static type: the declared type of the variable (never changes)
• Dynamic type: the run-time class of the object the variable

currently refers to (can change as program executes)
• Legal assignment depends on static type compatibility

If dynamic type really matches static type, can implement a runtime check for this
with casts

7/6/2004 (c) 2001-4, University of Washington 02-28

Static and Dynamic Types
• Which of these are legal? Illegal?

• Can you fix any of these with casts?

• What are the static and dynamic types of the variables
after assignments?

Static? Dynamic?

HourlyEmployee bart = new HourlyEmployee(…);
ExemptEmployee homer = new ExemptEmployee(…);
Employee marge = new Employee(…)
marge = homer ;
homer = bart;
homer = marge;

CSE143 Sp04 02-8

7/6/2004 (c) 2001-4, University of Washington 02-29

Dynamic Dispatch

• "Dispatch" refers to the act of actually placing a method
in execution at run-time

• When types are static, the compiler knows exactly what
method must execute

• When types are dynamic... the compiler knows the name
of the method – but there could be ambiguity about
which version of the method will actually be needed at
run-time
• In this case, the decision is deferred until run-time, and we

refer to it as dynamic dispatch
• The chosen method is the one matching the dynamic (actual)

type of the object

7/6/2004 (c) 2001-4, University of Washington 02-30

Method Lookup: How Dynamic Dispatch Works

• When a message is sent to an object, the right method to run is
the one in the most specific class that the object is an instance of

• Makes sure that method overriding always has an effect

• Method lookup (a.k.a. dynamic dispatch) algorithm:
• Start with the actual run-time class (dynamic type) of the receiver object (not

the static type!)
• Search that class for a matching method
• If one is found, invoke it
• Otherwise, go to the superclass, and continue searching

• Example:
Employee e = new HourlyEmployee(…)
System.out.println(e); // HourlyEmployee toString()
Employee e = new ExemptEmployee(…)
System.out.println(e); // ExemptEmployee toString()

7/6/2004 (c) 2001-4, University of Washington 02-31

What about getPay()?

• Got to include it in Employee so polymorphic code can
use it (why?)

public double getPay(Employee e) {
…

}

• But no implementation really makes sense
• Class Employee doesn’t contain “pay” instance variables
• So including an implementation of this in Employee is really

bogus
/** Return the pay earned by this employee */

public double getPay() {
return 0.0; // ???

}

7/6/2004 (c) 2001-4, University of Washington 02-32

Solution: Abstract Methods and Classes

• An abstract method is one that is declared but not
implemented in a class

/** Return the pay earned by this employee */
public abstract double getPay() ;

• A class that contains any abstract method(s) must itself
be declared abstract

public abstract class Employee { … }

• It makes sense for getPay() to be abstract.
• Therefore, Employee must be abstract

CSE143 Sp04 02-9

7/6/2004 (c) 2001-4, University of Washington 02-33

Facts about Abstract Classes

• Instances of abstract classes cannot be created
• Because they are missing implementations of one or more

methods

• An abstract class is intended to be extended
• Extending classes can override abstract methods they

inherit to provide actual implementations
• Instances of these extended classes can be created

7/6/2004 (c) 2001-4, University of Washington 02-34

Extending Abstract Classes
class HourlyEmployee extends Employee {

…
/** Return the pay of this Hourly Employee */
public double getPay() { return hoursWorked * payRate; }

}

• A class that extends an abstract class without
overriding all inherited abstract methods is itself
abstract (and can be further extended)

• A class that is not abstract is often called a concrete
class

7/6/2004 (c) 2001-4, University of Washington 02-35

Class Object

• Object is at the root of the Java class hierarchy
• Every class extends Object, either explicitly or implicitly

• If extends does not appear in a class declaration, “extends
Object” is assumed implicitly

• These are equivalent
public class Employee { … }
public class Employee extends Object { … }

7/6/2004 (c) 2001-4, University of Washington 02-36

Methods of Object

• Object includes a small number of methods appropriate
for all objects – toString, equals, a few others

• These methods are inherited by all classes, but can be
overridden – often necessary or at least a good idea

• Question to investigate: is Object an abstract class??

CSE143 Sp04 02-10

7/6/2004 (c) 2001-4, University of Washington 02-37

Summary
• Object-oriented programming is hugely important

• Lots of new concepts and terms
• Lots of new programming and modeling power
• Used widely in real programs

• Ideas (so far!)
• Composition ("has a") vs. specialization ("is a")
• Inheritance
• Method overriding
• Polymorphism, static vs. dynamic types
• Method lookup, dynamic dispatch
• Abstract classes and methods

