
CSE143 Sp04 01-1

6/23/2004 (c) University of Washington 01-1

CSE 143

Programming as Modeling
Programming Practice

Reading: Ch. 1-3 (review)

6/23/2004 (c) University of Washington 01-2

Building Virtual Worlds
• Much of programming can be viewed as building a

model of a real or imaginary world in the computer
• a banking program models real banks
• a checkers program models a real game
• a fantasy game program models an imaginary world
• a word processor models an intelligent typewriter

• Running the program (the model) simulates what would
happen in the modeled world

• Often it's a lot easier or safer to build models than the
real thing
• Example: a tornado simulator

6/23/2004 (c) University of Washington 01-3

Java Tools for Modeling
• Objects in Java can model things in the (real or

imaginary) world
• The bank: Customers, employees, accounts, transactions...
• Checkers: The Checkerboard, pieces, players, game history
• Video game: Characters, landscapes, obstacles, weapons,

treasure, scores
• Documents: paragraphs, words, symbols, spelling dictionaries,

fonts, smart paper-clip

• Objects have
• Responsibilities – what you can ask them to do
• Properties – what they know

6/23/2004 (c) University of Washington 01-4

Basic Java Mechanisms for Modeling
• A class describes a template or pattern for things;

an object or instance of a class is a particular thing
• Constructors model ways to create new instances
• Methods model actions that these things can perform (i.e., to

carry out their responsibilities)
• Messages (method calls) model requests from one thing to

another
• Instance variables model the state or properties of things
•public vs. private models how much an objects wants to

reveal about itself
• Private: “Please put me on your do-not-call list”

CSE143 Sp04 01-2

6/23/2004 (c) University of Washington 01-5

What Makes a Good Model?
• Often, the closer the model matches the (real or

imaginary) world, the better
• More likely it's an accurate model
• Easier for human readers of the program to understand what's

going on in the program

• Sometimes, a too detailed model of reality is not a good
thing. Why?

6/23/2004 (c) University of Washington 01-6

What Else Makes a Good Model?
• The easier the model is to extend & evolve, the better

• May want to extend the model...
• May need to change the model...

• Sad law of life: “A Program is Never Finished”
• Why??

6/23/2004 (c) University of Washington 01-7

Coupling and Cohesion

• A qualitative way to evaluate the organization of classes
or modules

• Coupling – the degree to which a class interacts with or
depends on another class

• Cohesion – how well a class encapsulates a single
notion

• A system is more robust and easier to maintain if
• Coupling between classes/modules is minimized
• Cohesion within classes/modules is maximized

6/23/2004 (c) University of Washington 01-8

A Review Example
/** Representation of an employee in a personnel system
* @author Hal Perkins
* @version CSE143 Sp03 lecture example */
public abstract class Employee {
// instance variables
private String name; // employee name
private int id; // employee id number
private double pay; // employee weekly pay
/** Construct a new employee with the give name, id number, and weekly pay
* @param name Employee's name
* @param id Employee's id number
*/

public Employee(String name, int id, double pay) {
this.name = name;
this.id = id;
this.pay = pay;

}
…

CSE143 Sp04 01-3

6/23/2004 (c) University of Washington 01-9

Employee Example (2)
/**
* Return the name of this employee
* @return Employee name
*/

public String getName() {
return name;

}

/**
* Return the id number of this employee
* @return Employee id number
*/

public int getId() {
return id;

}

…

6/23/2004 (c) University of Washington 01-10

Employee Example (3)
…

/**
* Return the pay earned by this employee
* @return Employee's pay for the current pay period
*/

public double getPay() {
return pay;

}

/** Set this employee’s pay
* @param newPayRate new pay rate for this employee
*/

public void setPay(double newPayRate) {
pay = newPayRate;

}
}

6/23/2004 (c) University of Washington 01-11

Programming Practice

• Programmers do certain things beyond just getting the
program to run

• These are often matters of “practice” rather than
functional requirements

• Some examples:
• toString methods
• commenting conventions
• formatting
• style
• main methods

6/23/2004 (c) University of Washington 01-12

toString: Recommended for All Classes
• A method with this exact signature:

public String toString();

/** Return a string representation of this employee */
public String toString() {

return "Employee(name = " + name + ", id = " + id +
", pay = " + pay + ")";

}

• Java treats toString in a special way
• In many cases, will automatically call toString when a String

value is needed:
System.out.println(“My bank account: ” + account);

CSE143 Sp04 01-4

6/23/2004 (c) University of Washington 01-13

toString
• Good while debugging

System.out.println(anObject); // calls anObject.toString()

• Secret Java lore:
• All Objects in Java have a built-in, default toString method
• So why define your own??

6/23/2004 (c) University of Washington 01-14

Java Documentation Comments

• Java provides a clean way of including documentation
as part of the source code – JavaDoc comments
• Begin with /** and end with */

• Special tags to control formatting
• @author – specify author
• @version – version number, date, etc.
• @param – description of a method parameter
• @return – description of a non-void method result
• Others (links, see also, …), plus can use arbitrary html

• Used to produce all online Java API documentation

6/23/2004 (c) University of Washington 01-15

Javadoc Tool

• Properly formed comments can be extracted
automatically

• Produce web documentation with convenient
hyperlinks, etc.

• All the API documentation we use was generated this
way: directly from comments in the code!

• Built-in support in current DrJava, Eclipse
• Command-line tool available: javadoc
• Learn to use it!

6/23/2004 (c) University of Washington 01-16

main: Another Common Practice
• Place a static main method in a class
• The Java VM will look for main and start execution there

automatically

/** Create and test some of the Employee operations */
public static void main (String[] args) {

Employee bob = new Employee("Joe Bob“, 314, 1000.00);
bob.setPay(1200);
System.out.println(bob.getName());
System.out.println(bob); // automatically calls bob.toString()

}

} // end of Employee

CSE143 Sp04 01-5

6/23/2004 (c) University of Washington 01-17

Required vs. Recommended

• Writing toString is "recommended"
• Creating main methods is "recommended"
• You've probably been given other recommendations:

• comments, variable naming, indentation, etc.
• Use this library, don't use that library

• Why bother, when the only thing that matters is whether
your program runs or not?
• Answer: Whether your program runs or not is not the only thing

that matters!
Yes, it needs to work, but people need to be able to read and understand it

6/23/2004 (c) University of Washington 01-18

Software Engineering and Practice

• Building good software is not just about getting it to
produce the right output

• Many other goals may exist
• "Software engineering" refers to practices which

promote the creation of good software, in all its aspects
• Some of this is directly code-related: class and method design
• Some of it is more external: documentation, style
• Some of it is higher-level: system architecture

• Attention to software quality is important in CSE143
• as it is in the profession

