
CSE143 Au04 22-1

12/8/2004 (c) 2001-4, University of Washington 22-1

CSE 143 Java

Hashing

12/8/2004 (c) 2001-4, University of Washington 22-2

Review
• Want to implement Sets of objects

• Want fast contains(), add()
• One strategy: a sorted list

• OK contains(): use binary search
• Slow add(): have to maintain list in sorted order

• Another strategy: a binary search tree
• OK contains(): use binary search through tree
• OK add(): use binary search to find right place to insert

12/8/2004 (c) 2001-4, University of Washington 22-3

A Magical Strategy
• What if... we had a magic method that could convert each

possible element value into its own unique integer?
• Takes an element, returns an integer (called a hash code)
• Called a perfect hash function

• Then we could store the set elements in an array,
with each element stored at an index equal to its hash code

• Array access is constant time – very fast: O(1)
• If computing the hash value is also O(1), lookup is O(1)

• Beats O(log n), which is the best we’ve seen so far

object
49

12/8/2004 (c) 2001-4, University of Washington 22-4

Hash Function Example
• Suppose we wanted to hash on a person's last name
• Use the individual characters of the name to compute a

number
• Example: cast each char to its int value, add all the int values

• Use the integer as an index into an array
• Drawbacks?

• Array would be very large
• "Soto" and "Soot" hash to the same value

Called a "collision"

• There are better string hash functions

CSE143 Au04 22-2

12/8/2004 (c) 2001-4, University of Washington 22-5

If Only We Had A Perfect Hash...
• A Perfect hash function is one which has no collisions

• two different objects never have the same hash code
How fast is contains()?

• Would just test whether value at the hash location index was
non-null

• Fast!
• How fast is add()?

• would just set the index to contain the element
• Fast!

12/8/2004 (c) 2001-4, University of Washington 22-6

Perfect vs. Imperfect Hash Functions
• Perfect hash functions are practical to implement only in

limited cases
• When the set of possible elements is small and known in

advance
• But "imperfect" hash functions are practical
• An imperfect (or regular) hash function can produce

collisions
• Imperfect hash functions compromise the promise of

fast performance
• How?
• Can we salvage the design?

12/8/2004 (c) 2001-4, University of Washington 22-7

Solution: Buckets
• Instead of each array position containing the set

elements directly...
• it can contain a list of elements that all share the same hash

code
• This list is called a bucket
• Unlike ordinary buckets, this kind can never be full!

• To test whether an element is in the set:
• Use the hash code to find the correct bucket
• Search that bucket’s list for the element

• Add works similarly

12/8/2004 (c) 2001-4, University of Washington 22-8

More about Buckets
• If hash function is good, then most elements will be in

different buckets, and each bucket will be short
• Most of the time, contains() and add() will be fast!

• There will probably be unused buckets – particularly at
first
• No data value happens to hash to a particular bucket

• Tradeoff:
• more buckets: shorter linked lists, more unused space
• fewer buckets: longer linked lists, less unused space

• Footnote: This design is open hashing; there is a
variation called closed hashing too.

CSE143 Au04 22-3

12/8/2004 (c) 2001-4, University of Washington 22-9

Object Hash Codes in Java
• Class Object defines a method hashCode() which

returns a an integer code for an object
• Strives to be different for different objects, but might not

always be
• Generally, you should assume the default hashCode in Java is

very imperfect
• Subclasses can override this if a more suitable hash

function is appropriate for instances

12/8/2004 (c) 2001-4, University of Washington 22-10

Hash Codes in Your Own Classes
• Subclasses should override hashCode() if a more suitable hash

function is appropriate for instances
• Key rule: if o1 and o2 are different objects, then if

o1.equals(o2) == true
it must also be true that

o1.hashCode() == o2.hashCode()
• Corollary: If you override either of hashCode() or equals(…) in a

class, you probably should override the other one to be
consistent

• Danger: The Java system cannot enforce these rules. A well-
designed (“proper”) class will follow them as a matter of good
practice

12/8/2004 (c) 2001-4, University of Washington 22-11

HashCode for Complex Objects in Java
• Key idea: calculate a hash code value using the fields

that are considered in method equals
• Hash codes for individual fields

Boolean: 0 or 1; int, char: cast to int; float, double, long: get the bits (see ref.)
Object reference: assuming this field implements equals by recursively calling
equals on its parts, call get the hashCode for the fields

• Combining the field hash codes – one possibility
result = 17;
for each hash code c for some part of the object, set result = 37*result+c;
return result

• Source: Effective Java by Joshua Bloch (A-W, 2001)
[Great Java book!]

12/8/2004 (c) 2001-4, University of Washington 22-12

HashMap: Java Library Dictionary Class
• The java.util.HashMap implements a dictionary using a

hash table
• Uses the objects hashCode() method to compute bucket #

• Key operations (interface Map)
public interface Map {

// associate the given key with the given value
public Object put(Object key, Object value);
// Return the value associated with the key, or null if no such value
public Object get(Object key);
// Remove the key and its associated object from the map
public Object remove(Object key);

}

CSE143 Au04 22-4

12/8/2004 (c) 2001-4, University of Washington 22-13

Implementing a HashSet Class
• HashSet: an implementation of Set using hashing

public class HashSet implements Set {
private List[] buckets; // buckets[k] is a list of elements that satisfy

// elem.hashCode() % nBuckets == k
// buckets[k]==null if no elems have hashcode k

private static final nBuckets =101; // default # of buckets
public HashSet() {

buckets = new List[nBuckets]; // each elem initialized to null
}
…

• Generally, having a prime number of buckets produces a
decent distribution of objects among the buckets

12/8/2004 (c) 2001-4, University of Washington 22-14

Computing the Bucket Number
• Algorithm:

• Compute the object's hash code
• Convert it into a legal index into the buckets array:

something in the range 0..buckets.length-1

/** Return the index in buckets where the elem would be found, if it's in the set */
private int bucketNum(Object elem) {

return elem.hashCode() % buckets.length;
}

12/8/2004 (c) 2001-4, University of Washington 22-15

Adding a New Element
public boolean add(Object elem) {

int i = bucketNum(elem);
List bucket = buckets[i];
if (buckets == null) {

// this is the first element in this bucket; create the bucket list first
bucket = new ArrayList();
buckets[i] = bucket;

} else { // return false if elem is already contained in the set
if (bucket.contains(elem)) { return false; }

} // otherwise add element to bucket’s list
bucket.add(elem);
return true;

}
• Note that this (and following) code relies on fact that array elements are null

when an array is first created

12/8/2004 (c) 2001-4, University of Washington 22-16

Checking Whether an Element is In the Set
public boolean contains(Object elem) {

int i = bucketNum(elem);
List bucket = buckets[i];
if (bucket == null) {

// empty bucket
return false;

} else {
// look for element in non-empty bucket
return bucket.contains(elem);

}
}

CSE143 Au04 22-5

12/8/2004 (c) 2001-4, University of Washington 22-17

How Efficient is HashSet?
• Parameters

• n number of items stored in the HashSet
• b number of buckets

• Load factor: n/b – ratio of # entries to # buckets
• Cost of contains() and add() is roughly constant,

independent of the size of the set, provided that:
• Hash function is good – distributes keys evenly throughout buckets

Ensures that buckets are all about the same size; no really long buckets
• Load factor is small

Don't have to search too far in any bucket

• In the average case, the fastest set implementation!
• In the worst case, the slowest…

12/8/2004 (c) 2001-4, University of Washington 22-18

Some Issues
• Interesting issues for data structures courses

• How do you pick a good hash function?
Needs to be O(1) and produce few duplicates

• How do you keep the load factor small?
One answer: Grow the buckets array and rehash all the elements if the load
factor gets too large

• Take CSE373 or CSE326 to learn more!

12/8/2004 (c) 2001-4, University of Washington 22-19

Summary
• Hash functions "guess" the right index to look for an

element
• Can do it faster than binary search can

• If most buckets are short (e.g. <= 3 elements), then
works very well

• To keep bucks small, need:
• good hash functions and
• the ability to grow the buckets array

12/8/2004 (c) 2001-4, University of Washington 22-20

Comparing Data Structures
• We now have several implementations of data structures

in which we can store and search for objects
• Array-based lists
• Linked lists
• Trees

Binary search trees, in particular
• Hash sets

• Each offers various tradeoffs of performance for
common operations
• Add, remove, contains, iterate (either in random or sequential

order)
• Which one is best?

