CSE 143

Binary Search Trees

Binary Search Trees

- Idea: order the nodes in the tree so that, given that a node contains a value v,
- All nodes in its left subtree contain values < v
- All nodes in its right subtree contain values $>v$
- A binary tree with these properties is called a binary search tree (BST)
- Notes:
- Can also define a BST using >= and <= instead of >,< This implies there could be duplicate values in the tree
- In Java, if the values are not primitive types, they must implement interface comparable (i.e., provide compareTo)

Implementing a Set with a BST

- Can exploit properties of BSTs to have fast, divide-andconquer implementations of add and contains - TreeSet!
- A TreeSet can be represented by a pointer to the root node of a binary search tree, or null of no elements yet public class SimpleTreeSet implements Set \{

private BTNode root;

// root node, or null if none
public SimpleTreeSet() \{ root = null; \}
// size as for BinTree
\}

$12 / 5 / 2004$	(c) 2001-4, University of Washington	$21-5$

Costliness of contains

- Review: in a binary tree, contains is $\mathrm{O}(\mathrm{N})$ (worst case)
- contains may be a frequent operation in an application
- Can we do better than $\mathrm{O}(\mathrm{N})$?
- Turn to previous experience for inspiration...
- Why was binary search so much better than linear search?
- What did it take to ensure that Quicksort was $O(n \log n)$
- Can we apply the same idea to trees?

contains for a BST

- For a general binary tree, contains had to search both subtrees
- Like linear search
- With BSTs, need to only search one subtree
- All small elements to the left, all large elements to the right
- Search either left or right subtree, based on comparison between item and value at the root of the (sub-)tree
- Like binary search

add
- Must preserve BST invariant: insert new element in
correct place in BST
- Two base cases
- Tree is empty: create new node which becomes the root of the
tree
- If node contains the value, found it; suppress duplicate add
- Recursive case
- Compare value to current node's value
- If value < current node's value, add to left subtree recursively
- Otherwise, add to right subtree recursively
12/5/2004
(c) 2001-4, University of wastington

Example (2)

- What if we change the order in which the numbers are added?
- Add 1, 5, 7, 8, 10, 11 to a BST, in that order (following the algorithm):

Cost of add • Cost at each node: • How many recursive calls? • Proportional to height of tree • Best case? • Worst case? $12 / 5 / 2004$ (c) 2001-4, University of Washington

Another Challenge: remove

- Algorithm: find the node containing the element value being removed, and remove that node from the tree
- Removing a leaf node is easy: replace with an empty tree
- Removing a node with only one non-empty subtree is easy: replace with that subtree
- How to remove a node that has two non-empty subtrees? - Need to pick a new element to be the new root node, and adjust at least one of the subtrees
- E.g., remove the largest element of the left subtree (will be one of the easy cases described above), make that the new root

1215/2004
(c) 2001-4, University of Washington

21-17

A Challenge: iterator

- How to return an iterator that traverses the sorted set in order?
- Need to iterate through the items in the BST, from smallest to largest
- Problem: how to keep track of position in tree where iteration is currently suspended
- Need to be able to implement next(), which advances to the correct next node in the tree
- Solution: keep track of a path from the root to the current node
- Still some tricky code to find the correct next node in the tree
$\begin{array}{lll}12 / 5 / 2004 & \text { (c) 2001-4, University of Washington }\end{array}$

Analysis of Binary Search Tree Operations

- Cost of operations is proportional to height of tree
- Best case: tree is balanced
- Depth of all leaf nodes is roughly the same
- Height of a balanced tree with n nodes is $\sim \log n$
- If tree is unbalanced, height can be as bad as the number of nodes in the tree
- Tree becomes just a linear list

