
CSE143 Au04 18-1

11/18/2004 (c) 2001-4, University of Washington 18-1

CSE 143 Java

Searching and Recursion

Reading: Ch. 14 & Secs. 19.1-19.2

11/18/2004 (c) 2001-4, University of Washington 18-2

Overview
• Topics

• Sequential and binary search
• Recursion

11/18/2004 (c) 2001-4, University of Washington 18-3

Problem: A Word Dictionary
• Suppose we want to maintain a list of words

“aardvark”
“apple”
“tomato”
“orange”
“banana”
etc.

• Use the same basic representation as in SimpleArrayList
String[] words; // the list of words is stored in words[0..size-1]
int size; // number of words currently in the list

• We would like to be able to determine efficiently if a
particular word is in the list

11/18/2004 (c) 2001-4, University of Washington 18-4

Sequential (Linear) Search
• If we don’t know anything about the order of the words in the list,

we basically have to use a linear search to look for a word
// return location of word in words, or –1 if found
int find(String word) {

int k = 0;
while (k < size && !word.equals(words[k]) {

k++
}
if (k < size) { return k; } else { return –1; } // lousy indenting to fit on slide

} // don’t do this at home

• Search time for list of size n:
• Can we do better?

11/18/2004 (c) 2001-4, University of Washington 18-5

Can we do better?
• Yes if the list is in alphabetical order

0 aardvark // instance variable of the Ordered List class
1 apple String[] words; // list is stored in words[0..size-1]
2 banana // and words are in ascending
3 cherry int size; // order
4 kumquat
5 orange
6 pear
7 rutabaga

11/18/2004 (c) 2001-4, University of Washington 18-6

Binary Search
• Key idea: to search a section of the array,

• Examine middle element
• Search either left or right half depending on whether desired

word precedes or follows middle word alphabetically
• A precondition for binary search is that the list is sorted

• The algorithm is not guaranteed (or required) to give the
correct answer if the precondition is violated

CSE143 Au04 18-2

11/18/2004 (c) 2001-4, University of Washington 18-7

Binary Search Sketch (not quite legal Java)
/** Return the location of word in words[lo..hi], or -1 if not found */
int bSearch(String word, int lo, int hi) {

if (lo > hi) { return -1; } // empty interval
int mid = (lo + hi) / 2;
if (word “==” words[mid]) { return mid; } // found it!
else if (word “<=” words[mid]) {

// look for word in the left half
return _________________________________ ;

} else { // word “>=” words[mid]
// look for word in the right half
return _________________________________ ;

}

11/18/2004 (c) 2001-4, University of Washington 18-8

Recursion
• A method (function) that calls itself is recursive
• Nothing really new here
• Method call review:

• Evaluate argument expressions
• Allocate space for parameters and local variables of function

being called
• Initialize parameters with argument values
• Then execute the function body

• What if the function being called is the same one that is
doing the calling?
• Answer: no difference at all!

11/18/2004 (c) 2001-4, University of Washington 18-9

Wrong Way to Think About It

...
bSearch(array, lo, mid-1)

...

bSearch

11/18/2004 (c) 2001-4, University of Washington 18-10

Right Way to Think About It

...
bSearch(array, lo, hi)

...

bSearch

...
bSearch(array, lo, mid-1)

...

bSearch

11/18/2004 (c) 2001-4, University of Washington 18-11

Recursive Definitions
• We see these all the time in mathematics
• Simple example: factorial function

⎩
⎨
⎧

−×
≤

=
otherwisenn

nif
n

)!1(
1,1

!

11/18/2004 (c) 2001-4, University of Washington 18-12

Recursive Implementation in Java
• We can use the definition directly to create a java

method to compute factorial

/** Return n! */
int fact(int n) {

if (n <= 1) {
return _______________ ;

} else {
return __________________________ ;

CSE143 Au04 18-3

11/18/2004 (c) 2001-4, University of Washington 18-13

Trace
• Execution of: result = fact(4);

11/18/2004 (c) 2001-4, University of Washington 18-14

Recursive Cases, Base Cases, and Termination
• A recursive definition needs to have two parts

• One or more base cases that are not recursive
if (n <= 1) { return 1; }

• One or more recursive cases that handle a “smaller” instance
of the problem

else { return n * fact(n-1); }

• The recursive cases must “make progress” towards a
base case
• If not, or if no base case(s) – infinite recursion

11/18/2004 (c) 2001-4, University of Washington 18-15

Back to Binary Search – Real Java This Time
/** Return word loc. in the list or –1 if not found */
int find(String word) { return bSearch(0, size-1); }
// Return location of word in words[lo..hi] or –1 if
not found
int bSearch(String word, int lo, int hi) {

// return –1 if interval lo..hi is empty
if (lo > hi) { return –1; }
// search words[lo..hi]
int mid = (lo + hi) / 2;
int comp = word.compareTo(words[mid]);
if (comp == 0) { return mid; }
else if (comp < 0) {

return bSearch(word, lo, mid-1) ;
} else /* comp > 0 */ {

return bSearch(word, mid+1, hi) ;
}

}

• Which are the

• Base case(s)?

• Recursive case(s)?

• How do the recursive case(s) make
progress towards the base case(s)?

11/18/2004 (c) 2001-4, University of Washington 18-16

Trace
• Trace execution of find(“orange”)

0 aardvark
1 apple
2 banana
3 cherry
4 kumquat
5 orange
6 pear
7 rutabaga

11/18/2004 (c) 2001-4, University of Washington 18-17

Trace
• Trace execution of find(“kiwi”)

0 aardvark
1 apple
2 banana
3 cherry
4 kumquat
5 orange
6 pear
7 rutabaga

11/18/2004 (c) 2001-4, University of Washington 18-18

Analysis of Binary Search
• Time (number of steps) per each recursive call:

• Number of recursive calls:

• Total time:

CSE143 Au04 18-4

11/18/2004 (c) 2001-4, University of Washington 18-19

How Many Calls Needed for a List of Size n?
of recursive calls needed (t) List size (n)

11/18/2004 (c) 2001-4, University of Washington 18-20

Graph: Linear vs Binary Search

11/18/2004 (c) 2001-4, University of Washington 18-21

Another Way to Picture the Cost
N

N/2 N/2

N/4 N/4 N/4 N/4

1

0 0

1

0 0

1

0 0
1

0 0...

... ...

All paths from the size N case
to a size 0 case are the same
length: 1+log2N

Any given run of binary search
will follow only one path from
the root to some leaf

11/18/2004 (c) 2001-4, University of Washington 18-22

Linear Search vs. Binary Search
• What is incremental cost if size of list is doubled?

• Linear search:
• Binary search:

• Why is Binary search faster?
• The data structure is the same
• The precondition on the data structure is different: stronger
• Recursion itself is not an explanation

One could code linear search using recursion, or binary search with a loop

11/18/2004 (c) 2001-4, University of Washington 18-23

Recursion vs. Iteration
• Recursion can completely replace

iteration
• Some rewriting of the algorithm is

necessary
• usually minor

• Some languages have recursion only
• Recursion is often more elegant but

has some extra overhead (often not
a major issue, but can be)

• Recursion is a natural for certain
algorithms and data structures
• Useful in "divide and conquer"

situations

• Iteration can completely replace
recursion

• Some rewriting of the algorithm is
necessary
• often major

• A few (mostly older languages) have
iteration only

• Iteration is not always elegant but is
usually efficient

• Iteration is natural for linear (non-
branching) algorithms and data
structures

11/18/2004 (c) 2001-4, University of Washington 18-24

Recursion Summary
• Recursive definition: a definition that is (partially) given

in terms of itself
• Recursive method (function): a method that is (partially)

implemented by calling itself
• Need base case(s) and recursive case(s)

• Recursive cases must make progress towards reaching a base
case – must solve “smaller” subproblems

• Often a very elegant way to formulate a problem
• Let the method call mechanism handle the bookkeeping behind

the scenes for you
• A powerful technique – add it to your toolbag

