
CSE143 Au04 17-1

12/2/2004 (c) 2001-4, University of Washington 17-1

CSE 143

Stacks and Queues

Reading: Secs. 25.1 & 25.2

12/2/2004 (c) 2001-4, University of Washington 17-2

Typing and Correcting Chars
• What data structure would you use for this problem?

• User types characters on the command line
• Until she hits enter, the backspace key (<) can be used to 

"erase the previous character"

12/2/2004 (c) 2001-4, University of Washington 17-3

Sample 
• Action
• type h
• type e
• type l
• type o
• type <
• type l
• type w
• type <
• type <
• type <
• type <
• type i

• Result
• h
• he
• hel
• helo
• hel
• hell
• hellw
• hell
• hel
• he
• h
• hi

12/2/2004 (c) 2001-4, University of Washington 17-4

Analysis
• We need to store a sequence of characters
• The order of the characters in the sequence is 

significant
• Characters are added at the end of the sequence
• We only can remove the most recently entered character

• We need a data structure that is Last in, first out, or LIFO 
– a stack
• Many examples in real life: stuff on top of your desk, trays in 

the cafeteria, discard pile in a card game, …

12/2/2004 (c) 2001-4, University of Washington 17-5

Stack Terminology
• Top: Uppermost element of 

stack,
• first to be removed

• Bottom: Lowest element of 
stack,
• last to be removed

• Elements are always inserted 
and removed from the top 
(LIFO – Last In, First Out)

...

top

bottom

aStack:

12/2/2004 (c) 2001-4, University of Washington 17-6

Stack Operations
• push(Object): Add an element to the top of the stack, 

increasing stack height by one
• Object pop( ): Remove topmost element from stack and 

return it, decreasing stack height by one
• Object top( ): Returns a copy of topmost element of 

stack, leaving stack unchanged
• No “direct access”

• cannot index to a particular data item
• No convenient way to traverse the collection



CSE143 Au04 17-2

12/2/2004 (c) 2001-4, University of Washington 17-7

Picturing a Stack
• Stack pictures are usually 

somewhat abstract
• Not necessary to show details 

of object references, names, 
etc.
• Unless asked to do so, or course!

• "Top" of stack can be up, 
down, left, right – just label it.

12/2/2004 (c) 2001-4, University of Washington 17-8

What is the result of...

Stack s;
Object v1,v2,v3,v4,v5,v6;
s.push(“Yawn”);
s.push(“Burp”);
v1 = s.pop( );
s.push(“Wave”);
s.push(“Hop”);
v2 = s.pop( );
s.push(“Jump”);
v3 = s.pop( );
v4 = s.pop( );
v5 = s.pop( );
v6 = s.pop( ); 

v1 v2 v3 v4 v5 v6

s

12/2/2004 (c) 2001-4, University of Washington 17-9

Stack Practice
• Show the changes to the stack in the following example:

Stack s;
Object obj;
s.push(“abc”);
s.push(“xyzzy”);
s.push(“secret”); 
obj = s.pop( ); 
obj = s.top( ); 
s.push(“swordfish”);
s.push(“terces”);

12/2/2004 (c) 2001-4, University of Washington 17-10

Stack Implementations
• Several possible ways to implement

• An array
• A linked list

How would you do these?  Tradeoffs?

• Java library does not have a Stack class
• Easiest way in Java: implement with some sort of List

• push(Object)  add(Object)
• top( ) get(size( ) –1)
• pop( ) remove(size( ) -1)
• Precondition for top( ) and pop( ): stack not empty
• Cost of operations?  O(?)

12/2/2004 (c) 2001-4, University of Washington 17-11

An Application: What Model Do We Want?
• waiting line at the movie theater...
• job flow on an assembly line...
• traffic flow at the airport....
• "Your call is important to us.  Please stay on the line.  Your call 

will be answered in the order received.  Your call is important to 
us...
• …

• Characteristics
• Objects enter the line at one end (rear)
• Objects leave the line at the other end (front)

• This is a “first in, first out” (FIFO) data structure.

12/2/2004 (c) 2001-4, University of Washington 17-12

Queue Definition
• Queue: Ordered collection, accessed 

only at the front (remove) and rear 
(insert)
• Front: First element in queue
• Rear: Last element of queue 

• FIFO: First In, First Out
• Footnote: picture can be drawn in any 

direction

front rear

...
aQueue:



CSE143 Au04 17-3

12/2/2004 (c) 2001-4, University of Washington 17-13

Abstract Queue Operations
• insert(Object) – Add an element to rear of a queue

• succeeds unless the queue is full (if implementation is 
bounded)

• often called “enqueue”
• Object front( ) – Return a copy of the front element of a 

queue
• precondition: queue is not empty

• Object remove( ) – Remove and return the front element 
of a queue
• precondition: queue is not empty
• often called “dequeue”

12/2/2004 (c) 2001-4, University of Washington 17-14

Queue Example
• Draw a picture and show the changes to the queue in 

the following example:
Queue q; Object v1, v2;

q.insert(“chore”);
q.insert(“work”);
q.insert(“play”);
v1 = q.remove();
v2 = q.front();
q.insert(“job”);
q.insert(“fun”);

12/2/2004 (c) 2001-4, University of Washington 17-15

What is the result of:
Queue q; Object v1,v2,v3,v4,v5,v6
q.insert(“Sue”);
q.insert(“Sam”);
q.insert(“Sarah”);
v1 = q.remove( );
v2 = q. front( );
q.insert(“Seymour”);
v3 = q.remove( );
v4 = q.front( );
q.insert(“Sally”);
v5 = q.remove( );
v6 = q. front( );

12/2/2004 (c) 2001-4, University of Washington 17-16

Queue Implementations
• Similar to stack

• Array – trick here is what do you do when you run off the end
• Linked list – ideal, if you have both a first and a last pointer.

• No standard Queue class in Java library
• Easiest way in Java: use LinkedList class

• insert(Object) addLast(Object)    [or add(Object)]
• getFront( ) getFirst( )
• remove( ) removeFirst( )

Interesting "coincidence" – a Java LinkedList supports exactly the operations you 
would want to implement queues.  Internally it uses a doubly-linked list, where 
each node has a reference to the previous node as well as the next one

12/2/2004 (c) 2001-4, University of Washington 17-17

Bounded vs Unbounded
• In the abstract, queues and stacks are generally thought of as 

"unbounded": no limit to the number of items that can be 
inserted.

• In most practical applications, only a finite size can be 
accommodated: "bounded".

• Assume "unbounded" unless you hear otherwise.
• Makes analysis and problem solution easier
• Well-behaved applications rarely reach the physical limit

• When the boundedness of a queue is an issue, it is sometimes 
called a "buffer"
• People speak of bounded buffers and unbounded buffers
• Frequent applications in systems programming

E.g. incoming packets, outgoing packets

12/2/2004 (c) 2001-4, University of Washington 17-18

Summary
• Stacks and Queues

• Specialized list data structures for specific applications
• Stack

• LIFO (Last in, first out)
• Operations: push(Object), top( ), and pop( )

• Queue
• FIFO (First in, first out)
• Operations: insert(Object), getFront( ), and remove( )

• Implementations: arrays or lists are possibilities for 
each


