
CSE143 Au04 09-1

10/20/2004 (c) 2001-4, University of Washington 09-1

CSE 143 Java

Adapter Classes & Inner Classes

Reading: Ch. 17

10/20/2004 (c) 2001-4, University of Washington 09-2

Overview
• Adapter Classes
• Inner Classes

• Named
• Anonymous

10/20/2004 (c) 2001-4, University of Washington 09-3

Event Handling Evaluated
• The bouncing ball simulator had a couple of awkward

features
• The class implementing MouseListener had to implement all of

the methods in that interface, even though it was only
interested in mouse click events

• The mouse and button listeners were separate classes from the
controller, yet they were closely intertwined (high coupling)

All had to know about the simulated world
• The listener classes introduced unneeded top-level class

names
• Can clean this up considerably using adapter classes

and inner classes

10/20/2004 (c) 2001-4, University of Washington 09-4

Adapter Classes
• Problem: Many of the event handling interfaces have

several methods (MouseReleased, MouseClicked…),
but user may only be interested in 1 or 2, not all 5 or 10

• Solution: Most of these interfaces have an associated
adapter class that contains empty implementations of all
the methods in the interface
• (Not provided for ActionListener, since it has only one method)

• Idea: Extend the adapter class and override the
interesting methods
• Inherit the empty implementations of the methods you don’t

care about

10/20/2004 (c) 2001-4, University of Washington 09-5

MouseListener & Mouse Adapter
• Old code

class SimMouseListener
implements MouseListener {

/** process mouse click */
public void mouseClicked(MouseEvent e) {

world.add(randomBall(e.getX(), e.getY()));
}

// other events in mouselistener
public void mouseEntered(MouseEvent e) { }
public void mouseExited(MouseEvent e) { }
public void mousePressed(MouseEvent e) { }
public void mouseReleased(MouseEvent e) { }

}

• New code

class SimMouseListener
extends MouseAdapter {

/** process mouse click */
public void mouseClicked(MouseEvent e) {

world.add(randomBall(e.getX(), e.getY()));
}

}

• Same functionality, less typing

10/20/2004 (c) 2001-4, University of Washington 09-6

Inner Classes
• The mouse and button listeners are tightly coupled to

the BallSimControl class
• Idea: would like these listeners to have direct access to

the instance variables of BallSimControl
• Solution: inner classes

• Declare the mouse and button listener classes inside the
BallSimControl class

• Code in inner classes has the same access to instance
variables as code in methods in class BallSimControl

• If the inner class is an implementation detail of the outer class,
make the inner class private

CSE143 Au04 09-2

10/20/2004 (c) 2001-4, University of Washington 09-7

Mouse Listener as an Inner Class
/** Viewer/controller for ball world simulation */
public class BallSimControl extends JPanel implements SimView {

// instance variables
private SimModel world; // the simulation world we are controlling
…
/** Handle mouse events */
private class SimMouseListener extends MouseAdapter {

/** process mouse clicks */
public void mouseClicked(MouseEvent e) {

world.add(randomBall(e.getX(), e.getY()));
}

• Notice direct use of world – no separate instance variable
needed in SimMouseListener to keep track of this

10/20/2004 (c) 2001-4, University of Washington 09-8

Anonymous Inner Classes
• We only create one instance of the mouse listener

SimMouseListener mouseListener = new SimMouseListener();
viewPane.addMouseListener(mouseListener);

• Maybe we don’t even need to give this class a name(!)
• In Java you can create anonymous inner classes

• Particularly useful in situations where we want to extend an
adapter and create a “function object” – an object that
encapsulates a function like a MouseClick listener method

• WARNING!!! Ghastly syntax ahead

10/20/2004 (c) 2001-4, University of Washington 09-9

Syntax for an Anonymous Inner Class
• Idea: a single construct replaces both the class

definition and the “new” operation that creates a single
instance of it

new classname (constructor_parameters_if_any) {
methods

}
• This creates a new instance of an anonymous class that

extends classname
• The methods in the class body can override methods declared

in classname

10/20/2004 (c) 2001-4, University of Washington 09-10

Anonymous Inner Class for Mouse Listener
• Instead of defining SimMouseListener and creating an

instance, replace
viewPane.addMouseListener(new SimMouseListener());

in BallSimControl with
viewPane.addMouseListener(

new MouseAdapter() { // anon. inner class extending MouseAdapter
public void mouseClicked(MouseEvent e) { // override mouseClicked

world.add(randomBall(e.getX(), e.getY()));
}

} // end of anon. inner class
);

• This is the conventional indentation; helps readability a bit

10/20/2004 (c) 2001-4, University of Washington 09-11

Summary
• Adapter classes – empty implementations of interfaces

that can be extended when only a few methods in the
interface are needed

• Inner classes
• Powerful programming technique – allows tightly coupled

classes (“helper classes”) to interact cleanly
• Can be named or anonymous (if extending some other class)
• Can be abused to create horribly complex code
• My advice: use when (and only when) they simplify things (for

you, for the reader)

