
CSE143 Au04 08-1

10/15/2004 (c) 2001-4, University of Washington 08-1

CSE 143 Java

Event-Driven Programming

Reading: Chs. 17-18, particularly Sec. 17.4

10/15/2004 (c) 2001-4, University of Washington 08-2

Overview
• Topics

• Event-driven programming (review)
• Events in Java
• Event listeners
• Buttons
• Mice

10/15/2004 (c) 2001-4, University of Washington 08-3

Event-Driven Programming (Review)
• Idea: program initializes itself then accepts events in whatever

random order they occur
• Kinds of events

• Mouse move/drag/click, Keyboard, Touch screen, Joystick, game controller
• Window resized or components changed
• Activity over network or file stream
• Sensors, lab experiments
• Timer interrupt

• First demonstrated in the 1960s(!);
• Major developments at Xerox PARC in the 1970s (Alto

workstation, Smalltalk, Xerox Star)
• Appeared outside research community in Apple Macintosh (1984)

10/15/2004 (c) 2001-4, University of Washington 08-4

Events in Java
• An object that is interested in an event must be

registered with the object (user interface component or
other) that generates the event
• An object may be registered to listen for many kinds of events

generated by many other objects
• There may be many listeners registered to listen for particular

kinds of events from a single object
• When an event occurs, all registered listeners are

notified by calling the appropriate method in the listener
objects

(Just like the model/viewer architecture)

CSE143 Au04 08-2

10/15/2004 (c) 2001-4, University of Washington 08-5

Event Objects
• An event is represented in Java by an event object

• AWT/Swing events are subclasses of AWTEvent. Examples:
ActionEvent – button pressed
KeyEvent – keyboard input
MouseEvent – mouse move/drag/click/button press or release

• Event objects contain information about the event
• User interface object that triggered the event
• Other information appropriate for the event. Examples:

ActionEvent – text string describing button (if from a button)
MouseEvent – mouse coordinates of the event

• All in java.awt.event
• Need to import this to handle events

10/15/2004 (c) 2001-4, University of Washington 08-6

Event Listeners
• An event listener must implement the appropriate

interface for the events it wishes to receive
• ActionListener, KeyListener, MouseListener (buttons),

MouseMotionListener (move/drag), others …
• When the event occurs, the appropriate method from the

interface is called
• actionPerformed, keyPressed, keyReleased, keyTyped,

mouseClicked, MouseDragged, etc. etc. etc.
Reminder – because these are part of an Interface, you can't change their
signatures

• An event object describing the event is supplied as a parameter
to the receiving method

10/15/2004 (c) 2001-4, University of Washington 08-7

A First Example – Simple Button Listener
• Idea: Create a JPanel extension with a single button in it
• Create a listener object to receive clicks on the button

and print a message when events happen
• Register the listener object with the button

10/15/2004 (c) 2001-4, University of Washington 08-8

Button Listener
• Simplest part of setup
• Need to implement ActionListener interface and

actionPerformed method declared in that interface
• Doesn’t do much – just gets the action command string

from the event object e and prints it
public class ButtonListener implements ActionListener {
/** Respond to events generated by the button. */
public void actionPerformed(ActionEvent e) {
System.out.println(e.getActionCommand());

}
}

CSE143 Au04 08-3

10/15/2004 (c) 2001-4, University of Washington 08-9

Button Panel
• This panel contains the button; when constructed, it

• creates the button and a listener
• adds the button to the panel
• registers the listener with the button

public class ButtonDemo extends JPanel {
/** Construct a new ButtonDemo object */

public ButtonDemo() {
JButton button = new JButton("Hit me!");
button.setActionCommand("OUCH!"); // optional - default is button text
button.addActionListener(new ButtonListener());
add(button);

}

10/15/2004 (c) 2001-4, University of Washington 08-10

Identifying the Button
• Only one button in this example, but what if the listener

was registered for ActionEvents from multiple buttons?
• Answer: use method getActionCommand() on the event

object – returns a string
• Default value is text in the button, but can set it with

setActionCommand on the button object
(setActionCommand is a good idea so the program won’t break if button text
changes later – maybe by translating to another language, but is optional for
CSE143)

10/15/2004 (c) 2001-4, University of Washington 08-11

Second Example: Mice
• A mouse generates an event every time it twitches

• Every move, every button press, …
• Sometimes it makes sense to handle every mouse

moved/dragged event; other times it’s just noise
• Key interfaces associated with mouse events:

• MouseListener – click, press, release, enter region, exit region
• MouseMotionListener – mouse moved or dragged

• MouseListener and MouseMotionListener methods
receive a MouseEvent parameter
• Contents: location of the mouse event, which modifier keys

were down when it happened, which buttons were pressed, etc.

10/15/2004 (c) 2001-4, University of Washington 08-12

Example: Mouse Clicks
public class Mouser extends JPanel implements MouseListener {

/** Constructor – register this object to listen for mouse events */
Mouser() {

addMouseListener(this);
}
/** Process mouse click */
public void mouseClicked(MouseEvent e) {

System.out.println(“mouse click at x = ” + e.getX() + “ y = “ e.getY());
}

•
•Also need to implement the other events in MouseListener
• Note that this JPanel extension registers itself to listen for the mouse events

–Could be done in other ways, e.g. have a separate listener object as we did with the
button

CSE143 Au04 08-4

10/15/2004 (c) 2001-4, University of Washington 08-13

Interactive Bouncing Balls
• Idea: add some interaction to the bouncing ball

simulation/animation
• First change: add buttons in a panel at the bottom to

pause and resume the simulation
• Steps

• Create a new JPanel containing the buttons
• Create a second JPanel BallSimControl containing the original

graphics view in the middle and the button JPanel beneath
• Add this to the top-level JFrame

10/15/2004 (c) 2001-4, University of Washington 08-14

Button Panel
• In BallSimControl (an extended JPanel) constructor

JButton pause = new JButton("pause");
JButton resume = new JButton("resume");
JButton stop = new JButton("stop");
JPanel buttons = new JPanel();
buttons.add(pause);
buttons.add(resume);
buttons.add(stop);
add(buttons, BorderLayout.SOUTH);

10/15/2004 (c) 2001-4, University of Washington 08-15

Handling Button Clicks
• Who should handle the pause/resume button clicks?

• Not the SimModel object – it shouldn’t know about views
• New class: SimButtonListener
• Code in BallSimControl

// set up listener for the buttons
buttonListener = new SimButtonListener(…);
pause.addActionListener(buttonListener);
resume.addActionListener(buttonListener);
stop.addActionListener(buttonListener);

10/15/2004 (c) 2001-4, University of Washington 08-16

Listener Object
class SimButtonListener implements ActionListener {

private SimModel world; // the model
/** Process button clicks by turning the simulation on and off */
public void actionPerformed(ActionEvent e) {

if (e.getActionCommand().equals("pause")) {
world.pause();

} else if (e.getActionCommand().equals("resume")) {
world.resume();

} else if (e.getActionCommand().equals("stop")) {
world.stop();

}
}

}
• Question: How does the listener know what SimModel object to notify?
• Answer: store a reference to the model in a listener instance variable

CSE143 Au04 08-5

10/15/2004 (c) 2001-4, University of Washington 08-17

Interactive Bouncing Balls (cont.)
• Second change: when the mouse is clicked in the

window, add a new bouncing ball with random size,
direction, and color

• Steps
• Create a SimMouseListener class to listen for the clicks
• Register a listener object to listen for clicks on the view pane

• Same complications as with the buttons – the listener
needs to know the model it interacts with

10/15/2004 (c) 2001-4, University of Washington 08-18

Initializing the Mouse Listener
• In BallSimControl

// set up listener for mouse clicks on the view
mouseListener = new SimMouseListener(…);
viewPane.addMouseListener(mouseListener);

10/15/2004 (c) 2001-4, University of Washington 08-19

Mouse Listener Object
/** Process mouse click by adding a new ball to the simulation at the
* location of the click with a random color, size, and velocity */
public void mouseClicked(MouseEvent e) {
world.add(randomBall(e.getX(), e.getY()));

}

/** Create a new ball with random color, size, and velocity */
public Ball randomBall(int x, int y) {
return new Ball(…);

}

10/15/2004 (c) 2001-4, University of Washington 08-20

Summary So Far
• Event-driven programming
• Event objects
• Event listeners – anything that implements the relevant

interface
• Must register with object generating events as a listener

• Listener objects – handle events by passing them along
to other objects

CSE143 Au04 08-6

10/15/2004 (c) 2001-4, University of Washington 08-21

Evaluation
• So far, we’ve implemented listeners as instances of

separate stand-alone classes
• Issues

• Relatively simple, fairly easy to understand, but
• Somewhat messy to provide listener with access to necessary

data (passing around all those references to the SimModel)
• Creates unnecessary top-level classes
• Also, had to implement all MouseListener methods even

though we only wanted to process clicks

10/15/2004 (c) 2001-4, University of Washington 08-22

Coming Attractions
• Solutions

• Event adapter classes – empty implementations of all methods
in an interface; extend and override (only) what you want

• Nested (inner) classes – which can be private
• Anonymous inner classes – create an extended adapter class

without even having to give it a name

