
CSE143 Au04 03-1

10/7/2004 (c) 2001-4, University of Washington 03-1

CSE 143 Java

Interfaces

Reading: Ch. 15.1.3

10/7/2004 (c) 2001-4, University of Washington 03-2

A Problem – Object Model for a Simulation
• Suppose we are designing the classes for a simulation

game like the Sims, or Sim City
• We might want to model

• People (office workers, police/firemen, politicians, …)
• Pets (cats, dogs, ferrets, lizards, …)
• Vehicles (cars, trucks, buses, …)
• Physical objects (buildings, streets, traffic lights, …)

• Object model – use inheritance
• Base classes for People, Pets, Vehicles, PhysicalThings, …
• Extended classes for specific kinds of things (Cat extends Pet,

Dog extends Pet, Truck extends Vehicle…)

10/7/2004 (c) 2001-4, University of Washington 03-3

Making it Tick
• A time-based simulation has some sort of clock that ticks

regularly
• On each tick, every object in the simulation needs to, for instance,

update its state, maybe redraw itself, …
• We would like to write methods in the simulation engine that can

work with any object in the simulation
/** update the state of simulation object thing for one clock tick */
public void updateState(??? thing) {

thing.tick();
thing.redraw();

}

• Question: What is the type of parameter thing in this method?

10/7/2004 (c) 2001-4, University of Washington 03-4

Type Compatibility
• We want to be able to write something like

public void updateState(SimThing thing) { … }

where “SimThing” is a type that is compatible with Cats,
Cars, People, Buildings. How?

• Could create an additional superclass SimThing and
have People, Pets, Vehicles, PhysicalThings, …, all
extend it, but:
• People, Pets, etc. don’t have a real “is-a” relationship
• What if we wanted to have other polymorphic methods that, for

example, only apply to breathing things?
• Deep inheritance hierarchies are brittle, hard to modify

10/7/2004 (c) 2001-4, University of Washington 03-5

Solution – Interfaces
• We want a way to create a type SimThing independently

of the simulation actor class hierarchies, then tag each
of those classes so they can be treated as SimThings

• Solution: create a Java interface to define type SimThing
• Declare that the appropriate classes implement this

interface

10/7/2004 (c) 2001-4, University of Washington 03-6

SimThing Interface
• Interface declaration

/** Interface for all objects involved in the simulation */
public interface SimThing {

public void tick();
public void redraw();

}
• Class declaration using the interface

/** Base class for all Pets in the simulation */
public class Pet implements SimThing {

/** tick method for Pets */
public void tick() { … }
/** redraw method for Pets */
public void redraw() { … }
…

}

CSE143 Au04 03-2

10/7/2004 (c) 2001-4, University of Washington 03-7

Interfaces and Implements
• A Java interface declares a set of method signatures

• i.e., says what behavior exists
• Does not say how the behavior is implemented

i.e., does not give code for the methods
• Does not describe any state (but may include “final” constants)

• A concrete class that implements an interface
• Contains “implements InterfaceName” in the class declaration
• Must provide implementations (either directly or inherited from

a superclass) of all methods declared in the interface
• An abstract class can also implement an interface

• Can optionally have implementations of some or all interface
methods

10/7/2004 (c) 2001-4, University of Washington 03-8

interface I
method signatures of

I, without code; no
instance variables

B's stuff

concrete
class C

methods of I,
including code

other methods,
instance

variables of C

10/7/2004 (c) 2001-4, University of Washington 03-9

Interfaces and Extends
• Both describe an “is-a” relation
• If B implements interface A, then B inherits the

(abstract) method signatures in A
• If B extends class A, then B inherits everything in A,

which can include method code and instance variables
as well as abstract method signatures

• Sometimes people distinguish “interface inheritance”
from “code” or “class inheritance”
• Specification vs implementation
• Informally, “inheritance” is sometimes used to talk about the

superclass/subclass “extends” relation only

10/7/2004 (c) 2001-4, University of Washington 03-10

Classes, Interfaces, and Inheritance
• A class

• Extends exactly one other class (which defaults to Object if
“extends …” does not appear in the class definition)

• Implements zero or more interfaces (no limit)
• Interfaces can also extend other interfaces

(superinterfaces)
Interface ScaryThing extends SimThing { … }

• Mostly found in larger libraries and systems
• A concrete class implementing an extended interface must

implement all methods in that interface and (transitively) all
interfaces that it extends

10/7/2004 (c) 2001-4, University of Washington 03-11

What is the Type of an Object?
• Every interface or class declaration defines a new type
• An instance of a class named Example has all of these

types:
• The named class (Example)
• Every superclass that Example extends directly or indirectly

(including Object)
• Every interface (including superinterfaces) that Example

implements
• The instance can be used anywhere one of its types is

appropriate
• As variables, as parameters and arguments, as return values

10/7/2004 (c) 2001-4, University of Washington 03-12

Benefits of Interfaces
• May be hard to see in small systems, but in large ones…
• Better model of application domain

• Avoids inappropriate uses of inheritance to get polymorphism
• More flexibility in system design

• Can isolate functionality in separate interfaces – better
cohesion, less tendency to create monster “kitchen sink”
interfaces or classes

• Allows multiple abstractions to be mixed and matched as
needed

CSE143 Au04 03-3

10/7/2004 (c) 2001-4, University of Washington 03-13

Interfaces vs Abstract Classes
• Both of these specify a type
• Interface

• Pure specification
• No method implementation (code), no instance variables, no

constructors
• Abstract class

• Method specification plus, optionally:
Partial or full default method implementation
Instance variables
Constructors (called from subclasses using super)

• Which to use?
10/7/2004 (c) 2001-4, University of Washington 03-14

Abstract Classes vs. Interfaces
Abstract Class Advantages

• Can include instance variables
• Can include a default (partial or

complete) implementation, as a
starter for concrete subclasses

• Wider range of modifiers and
other details (static, etc.)

• Can include constructors, which
subclasses can invoke with super

• Interfaces with many method
specifications are tedious to
implement (implementations can’t
be inherited)

Interface Advantages
• A class can extend at most one

superclass (abstract or not)
• By contrast, a class (and an

interface) can implement any
number of super-interfaces

• Helps keep state and behavior
separate

• Provides fewer constraints on
algorithms and data structures

10/7/2004 (c) 2001-4, University of Washington 03-15

A Design Strategy
• These rules of thumb seem to provide a nice balance for

designing software that can evolve over time:
(Might be overkill for CSE 143 projects)

• Any major type should be defined in an interface
• If it makes sense, provide a default implementation of the

interface with a class – can be abstract or concrete
• Client code can choose to either extend the default

implementation, overriding methods that need to be changed,
or implement the interface directly (the later is required if the
class explicitly extends a superclass)

• This pattern occurs frequently in the standard Java
libraries

