
CSE143 Au04 01-1

9/29/2004 (c) University of Washington 01-1

CSE 143

Programming as Modeling

Reading: Ch. 1-6

9/29/2004 (c) University of Washington 01-2

Building Virtual Worlds
• Much of programming can be viewed as building a model of a real

or imaginary world in the computer
• a banking program models real banks
• a checkers program models a real game
• a fantasy game program models an imaginary world
• a word processor models an intelligent typewriter and documents

• Running the program (the model) simulates what would happen in
the modeled world

• Often it's a lot easier or safer to build models than the real thing
• Example: a tornado simulator

9/29/2004 (c) University of Washington 01-3

Java Tools for Modeling
• Objects in Java can model things in the (real or

imaginary) world
• The bank: Customers, employees, accounts, transactions...
• Checkers: The Checkerboard, pieces, players, game history
• Video game: Characters, landscapes, obstacles, weapons,

treasure, scores
• Documents: paragraphs, words, symbols, spelling dictionaries,

fonts, smart paper-clip
• Objects have

• Responsibilities – what you can ask them to do
• Properties – what they know

9/29/2004 (c) University of Washington 01-4

Basic Java Mechanisms for Modeling
• A class describes a template or pattern for things;

an object or instance of a class is a particular thing
• Constructors model ways to create new instances
• Methods model actions that these things can perform

(i.e., to carry out their responsibilities)
• Messages (method calls) model requests from one thing

to another
• Instance variables model the state or properties of

things
•public vs. private

• Instance variables should normally be private

CSE143 Au04 01-2

9/29/2004 (c) University of Washington 01-5

What Makes a Good Model?
• Often, the closer the model matches the (real or

imaginary) world, the better
• More likely it's an accurate model
• Easier for human readers of the program to understand what's

going on in the program
• Sometimes, a too detailed model of reality is not a good

thing
• Why?

9/29/2004 (c) University of Washington 01-6

What Else Makes a Good Model?
• The easier the model is to extend & evolve, the better

• May want to extend the model...
• May need to change the model...

• Sad law of life: “A Program is Never Finished”
• Or at least a useful program is never finished

• Why??

9/29/2004 (c) University of Washington 01-7

Coupling and Cohesion
• A qualitative way to evaluate the organization of classes

or modules
• Coupling – the degree to which a class interacts with or

depends on another class
• Cohesion – how well a class encapsulates a single

notion
• A system is more robust and easier to maintain if

• Coupling between classes/modules is minimized
• Cohesion within classes/modules is maximized

9/29/2004 (c) University of Washington 01-8

A Review Example
/** Representation of an employee in a personnel system
* @author Hal Perkins
* @version CSE143 Sp03 lecture example */

public abstract class Employee {
// instance variables
private String name; // employee name
private int id; // employee id number
private double pay; // employee weekly pay
/** Construct a new employee with the give name, id number, and weekly pay
* @param name Employee's name
* @param id Employee's id number
*/

public Employee(String name, int id, double pay) {
this.name = name;
this.id = id;
this.pay = pay;

}
…

CSE143 Au04 01-3

9/29/2004 (c) University of Washington 01-9

Employee Example (2)
/**
* Return the name of this employee
* @return Employee name
*/

public String getName() {
return name;

}

/**
* Return the id number of this employee
* @return Employee id number
*/

public int getId() {
return id;

}

…

9/29/2004 (c) University of Washington 01-10

Employee Example (3)
…

/**
* Return the pay earned by this employee
* @return Employee's pay for the current pay period
*/

public double getPay() {
return pay;

}

/** Set this employee’s pay
* @param newPayRate new pay rate for this employee
*/

public void setPay(double newPayRate) {
pay = newPayRate;

}
}

9/29/2004 (c) University of Washington 01-11

toString: Recommended for All Classes
• A method with this exact signature:

public String toString();

/** Return a string representation of this employee */
public String toString() {
return "Employee(name = " + name + ", id = " + id +
", pay = " + pay + ")";

}

• Java treats toString in a special way
• In many cases, will automatically call toString when a String

value is needed:
System.out.println(“The bank account: ” + account);

9/29/2004 (c) University of Washington 01-12

toString
• Good while debugging

System.out.println(anObject); // calls anObject.toString()
• Secret Java lore:

• All Objects in Java have a built-in, default toString method
• So why define your own??

CSE143 Au04 01-4

9/29/2004 (c) University of Washington 01-13

JavaDoc
• Java provides a clean way of including documentation as part of

the source code – JavaDoc comments
• Begin with /** and end with */

• Can be automatically formatted to produce web documentation
• Built-in support in current DrJava, Eclipse; command-line tool available

• Special tags to control formatting
• @author – specify author
• @version – version number, date, etc.
• @param – description of a method parameter
• @return – description of a non-void method result
• Others (links, see also, …), plus can use arbitrary html

• Used to produce all online Java API documentation

9/29/2004 (c) University of Washington 01-14

Another Common Practice
• Place a static main method in each class to test or

demonstrate

/** Create and test some of the Employee operations */
public static void main (String[] args) {
Employee bob = new Employee("Joe Bob“, 314, 1000.00);
bob.setPay(1200);
System.out.println(bob.getName());
System.out.println(bob); // automatically calls bob.toString()

}

} // end of Employee

9/29/2004 (c) University of Washington 01-15

Required vs. Recommended
• Writing toString is "recommended"
• Creating main methods is "recommended"
• You've probably been given other recommendations:

• comments, variable naming, indentation, etc.
• Use this library, don't use that library

• Why bother, when the only thing that matters is whether
your program runs or not?
• Answer: Whether your program runs or not is not the only thing

that matters!
Yes, it needs to work, but people need to be able to read and understand it

9/29/2004 (c) University of Washington 01-16

Software Engineering and Practice
• Building good software is not just about getting it to

produce the right output
• Many other goals may exist
• "Software engineering" refers to practices which

promote the creation of good software, in all its aspects
• Some of this is directly code-related: class and method design
• Some of it is more external: documentation, style
• Some of it is higher-level: system architecture

• Attention to software quality is important in CSE143
• as it is in the profession

