
15-1

3/14/2003 (c) 1997-2003 University of Washington 15-1

CSE 143 Java

Trees

3/14/2003 (c) 1997-2003 University of Washington 15-2

Overview
• Topics

• Trees: Definitions and terminology

• Binary trees

• Tree traversals

• Binary search trees
• Applications of BSTs

3/14/2003 (c) 1997-2003 University of Washington 15-3

Trees
• Most of the structures we’ve looked at so far are linear

• Arrays

• Linked lists

• There are many examples of structures that are not linear,
e.g. hierarchical structures
• Organization charts

• Book contents (chapters, sections, paragraphs)
• Class inheritance diagrams

• Trees can be used to represent hierarchical structures

3/14/2003 (c) 1997-2003 University of Washington 15-4

Looking Ahead To An Old Goal
• Finding algorithms and data structures for fast searching

• A key goal

• Sorted arrays are faster than unsorted arrays, for searching
Can use binary search algorithm

Not so easy to keep the array in order

• LinkedLists were faster than arrays (or ArrayLists), for insertion and
removal operations

The extra flexibility of the "next" pointers avoided the cost of sliding
But... LinkedLists are hard to search, even if sorted

• Is there an analogue of LinkedLists for sorted collections??
• The answer will be...Yes: a particular type of tree!

15-2

3/14/2003 (c) 1997-2003 University of Washington 15-5

Tree Definitions
• A tree is a collection of nodes connected by edges
• A node contains

• Data (e.g. an Object)

• References (edges) to two or more subtrees or children

• Trees are hierarchical
• A node is said to be the parent of its children (subtrees)
• There is a single unique root node that has no parent

• Nodes with no children are called leaf nodes

• A tree with no nodes is said to be empty

3/14/2003 (c) 1997-2003 University of Washington 15-6

Drawing Trees
• For whatever reason, computer sciences trees are normally

drawn upside down: root at the top

3/14/2003 (c) 1997-2003 University of Washington 15-7

Tree Terminology

c g

a

b j

k

fe h id l

m

leaves

nodes

root

edges

3/14/2003 (c) 1997-2003 University of Washington 15-8

Subtrees
• A subtree in a tree is any node in the tree together with all of

its descendants (its children, and their children, recursively)

• Note: note every subset is a subtree!

a

b

c g

j

k m

15-3

3/14/2003 (c) 1997-2003 University of Washington 15-9

Level and Height

c g

a

b j

k

fe h id l

m

leaves (not all at same level)

level 2
level 3

level 1

Definition: The root has level 1
Children have level 1 greater than their parent

Definition: The height is the highest level of a tree.

3/14/2003 (c) 1997-2003 University of Washington 15-10

Binary Trees
• A binary tree is a tree each of whose nodes has no more

than two children
• The two children are called the left child and right child

• The subtrees belonging to those children are called the left subtree
and the right subtree

a

b

j f

e d hg

i

e

k

Left child Right child

3/14/2003 (c) 1997-2003 University of Washington 15-11

Binary Tree Implementation
• A node for a binary tree holds the item and references to its subtrees

public class BTNode {

public Object item; // data item in this node

public BTNode left; // left subtree, or null if none
public BTNode right; // right subtree, or null if none

public BTNode(Object item, BTNode left, BTNode right) { … }

}

• The whole tree can be represented just by a pointer to the root node,
or null if the tree is empty

public class BinTree {
private BTNode root; // root of tree, or null if empty

public BinTree() { this.root = null; }

…
}

3/14/2003 (c) 1997-2003 University of Washington 15-12

Tree Algorithms
• The definition of a tree is naturally recursive:

• A tree is either null,
or data + left (sub-)tree + right (sub-)tree

• Base case(s)?

• Recursive case(s)?

• Given a recursively defined data structure, recursion is often
a very natural technique for algorithms on that data structure
• Don’t fight it!

15-4

3/14/2003 (c) 1997-2003 University of Washington 15-13

A Typical Tree Algorithm: size()
public class BinTree {

…
/** Return the number of items in this tree */
public int size() {

return subtreeSize(root);
}
// Return the number of nodes in the (sub-)tree with root n
private int subtreeSize(BTNode n) {

if (n == null) {
return 0;

} else {
return 1 + subtreeSize(n.left) + subtreeSize(n.right);

}
}

3/14/2003 (c) 1997-2003 University of Washington 15-14

Tree Traversal
• Functions like subtreeSize systematically “visit” each node in

a tree
• This is called a traversal

• We also used this word in connection with lists

• Traversal is a common pattern in many algorithms
• The processing done during the “visit” varies with the algorithm

• What order should nodes be visited in?
• Many are possible

• Three have been singled out as particularly useful for binary trees:
preorder, postorder, and inorder

3/14/2003 (c) 1997-2003 University of Washington 15-15

Traversals
• Preorder traversal:

• “Visit” the (current) node first
i.e., do what ever processing is to be done

• Then, (recursively) do preorder traversal on its children, left to right

• Postorder traversal:
• First, (recursively) do postorder traversals of children, left to right
• Visit the node itself last

• Inorder traversal:
• (Recursively) do inorder traversal of left child
• Then visit the (current) node
• Then (recursively) do inorder traversal of right child

Footnote: pre- and postorder make sense for all trees; inorder only for binary trees

3/14/2003 (c) 1997-2003 University of Washington 15-16

Example of Tree Traversal

Preorder:

Inorder:

Postorder:

In what order are the nodes
visited, if we start the
process at the root?

9

5

2 7

4 6 81

12

17

l1

13

15-5

3/14/2003 (c) 1997-2003 University of Washington 15-17

More Practice
What about this tree?

6

3

1 4

2 5

8

7

l3

10

11

12

Inorder:

Preorder:

Postorder:

3/14/2003 (c) 1997-2003 University of Washington 15-18

New Algorithm: contains
• Return whether or not a value is an item in the tree

public class BinTree {
…
/** Return whether elem is in tree */
public boolean contains(Object elem) {

return subtreeContains(root, elem);
}
// Return whether elem is in (sub-)tree with root n
private boolean subtreeContains(BTNode n, Object elem) {

if (n == null) {
return false;

} else if (n.item.equals(elem)) {
return true;

} else {
return subtreeContains(n.left, elem) || subtreeContains(n.right, elem);

}
}

3/14/2003 (c) 1997-2003 University of Washington 15-19

Test
contains(d)

contains(c)

a

b

j f

e d hg

i

e

k

3/14/2003 (c) 1997-2003 University of Washington 15-20

Cost of contains
• Work done at each node:

• Number of nodes visited:

• Total cost:

