
08-1

3/15/2003 (c) 2001-2002, University of Washington Events-1

CSE 143 Java

Events, Event Handlers, and Threads
(slides not used in lecture 02au, 03wi)

3/15/2003 (c) 2001-2002, University of Washington Events-2

Overview
• Topics

• Event-driven programming

• Events in Java

• Event Listeners

• Event Adapters
• Threads

• Inner Classes

• Reading:
• Textbook: Ch. 19 & 20, particularly sec. 19.4

3/15/2003 (c) 2001-2002, University of Washington Events-3

Classic Data Processing
• Input specified as part of the program design

• Example: process bank account deposits
Repeated set of transactions
Each transaction consists of a deposit slip (transaction header) followed by 1 or
more checks to be deposited to the account

• Program expects input in required order
• Program structure mirrors input organization

while (more input) {

read and process transaction header
read and process individual checks

}

3/15/2003 (c) 2001-2002, University of Washington Events-4

Event-Driven Programming
• Idea: program initializes itself then accepts events in whatever random

order they occur
• Kinds of events

• Mouse move/drag/click, Keyboard, Touch screen, Joystick, game controller
• Window resized or components changed
• Activity over network or file stream
• Timer interrupt

(can still think of this as processing an “input stream”, but point of view is basically
different)

• First demonstrated in the 1960s(!); major developments at Xerox
PARC in the 1970s (Alto workstation, Smalltalk)

• Available outside research community with Apple Macintosh (1984)

08-2

3/15/2003 (c) 2001-2002, University of Washington Events-5

Java Events
• An event is represented by an event object

• AWT/Swing events are subclasses of AWTEvent. Some examples:
ActionEvent – button pressed

KeyEvent – keyboard input

MouseEvent – mouse move/drag/click/button press or release

• All user interface components generate events when appropriate
• Event objects contain information about the event

• User interface object that triggered the event
• Other information appropriate for the event. Examples:

ActionEvent – contents of button text generating event (if from a button)

MouseEvent – mouse coordinates of the event

• All in java.util.event – need to import this to handle events

3/15/2003 (c) 2001-2002, University of Washington Events-6

Event Listeners
• Basic idea: any object that is interested in an event registers itself with

the component that can generate the event
• The object must implement the appropriate Interface

• ActionListener, KeyListener, MouseListener (buttons), MouseMotionListener
(move/drag), others …

• When the event occurs, the appropriate method of the object is called
• actionPerformed, keyPressed, keyReleased, keyTyped, mouseClicked,

MouseDragged, etc. etc. etc.
Reminder – because these are part of an Interface, you can't change their signatures.

• An event object describing the event is a parameter to the receiving method

3/15/2003 (c) 2001-2002, University of Washington Events-7

Example: Mouse Clicks
public class Mouser extends JPanel implements MouseListener {

/** Constructor – register this object to listen for mouse events */
Mouser() {

super();
addMouseListener(this);

}

/** Process mouse click */
public void mouseClicked(MouseEvent e) {

System.out.println(“mouse click at x = ” + e.getX() + “ y = “ e.getY());
}

• Also need to implement the other events in MouseListener

3/15/2003 (c) 2001-2002, University of Washington Events-8

Example: Pause/Resume Buttons
• Idea: add a pair of buttons to the graphical view of the ball

simulator to control the simulation

• First, rearrange the code to create an extended Jframe
named BallSimControl that contains the JPanel with the
bouncing balls plus the pause/resume buttons

08-3

3/15/2003 (c) 2001-2002, University of Washington Events-9

Button/View Layout
• In the constructor for BallSimControl

Container cp = getContentPane();
BallGraphicsView viewPane = new BallGraphicsView()
cp.add(viewPane, BorderLayout.CENTER);
JButton pause = new JButton(“pause”);

JButton resume = new JButton(“resume”);
JPanel buttons = new JPanel();
buttons.add(pause);

buttons.add(resume);
cp.add(buttons, BorderLayout.SOUTH);

3/15/2003 (c) 2001-2002, University of Washington Events-10

Handling Button Clicks
• Who should handle the pause/resume button clicks?

• Not the SimModel object – shouldn’t know about views

• But need to catch the event and then call methods in the SimModel
to carry out the pause/resume

• One solution: create a listener object

• New class: SimButtonListener
• Code in BallSimControl

SimButtonListener listener = new SimButtonListener(simWorld);
pause.addActionListener(listener);

resume.addActionListener(listener);

3/15/2003 (c) 2001-2002, University of Washington Events-11

Listener Object
public class SimButtonListener implements ActionListener {

// instance variables
SimModel world; // the SimModel we are controlling

/** Constructor for objects of class SimButton */
public SimButtonListener(SimModel world) {

this.world = world;
}

/** Process button clicks by turning the simulation on and off */
public void actionPerformed(ActionEvent e) {

???
}

}

3/15/2003 (c) 2001-2002, University of Washington Events-12

Question: Which Button was Pressed?
• Several possible answers – here’s one

• Quick & dirty – get the button text from the event object
/** Process button clicks by turning the simulation on and off */

public void actionPerformed(ActionEvent e) {
if (e.getActionCommand().equals("pause")) {

world.pause();
} else if (e.getActionCommand().equals("resume")) {

world.resume();
}

}

• Not terribly portable – what if you wanted to translate the user
interface to Chinese? – but good enough for now

08-4

3/15/2003 (c) 2001-2002, University of Washington Events-13

Event Adapter Classes
• Interfaces like MouseListener and WindowListener contain

many methods; often we only are interested in one or two

• Alternative to implementing the interface and having to
provide empty implementations for uninteresting methods –
adaptor classes

• Java.awt.event includes an abstract class with empty
implementations of all required methods for each of the
event listener interfaces

KeyAdapter (for KeyListener), MouseAdapter (for MouseListener),
WindowAdapter (for WindowListener), etc.

• Extend and override only what you need to create a listener object

3/15/2003 (c) 2001-2002, University of Washington Events-14

Threads and The AWT Event Thread

• Java supports "threads": apparently concurrently executing
streams of instructions.

• User programs have at least one thread running
• Not hard to create additional threads

• Can be tricky to coordinate multiple threads

• The Java system has several threads running all the time

• One important system thread: the AWT event dispatcher
• All AWT/Swing event handlers execute in this thread
• Consequence: your event handlers may be running

simultaneously with your application code

3/15/2003 (c) 2001-2002, University of Washington Events-15

Example: Add Balls on Mouse Click
• Would like to create a listener that does something like this:

class BallClickListener extends MouseAdapter {
public void mouseClicked(MouseEvent e) {

if (model != null) {
model.add(randomBall(e.getX(), e.getY()));

}
}

}

• Listener needs to know about the model, etc.

• We really don’t want another top-level class; what we’d like is a
class definition nested inside BallGraphicsView, with access to
instance variables, particularly the model object we’re controlling

3/15/2003 (c) 2001-2002, University of Washington Events-16

Towards a Solution: Inner Classes
• Java 1.1 and later allows classes to be nested

• Inner classes define a new scope nested in the containing class
• Inner classes can access instances variables and methods of the containing class
• Inner classes can be public, protected, or private

• Example: Point2D
• has two inner classes, named Float and Double
• Are public, so can be used outside of class Point2D, as Point2D.Float and

Point2D.Double

• Inner classes in event handling
• A class like class BallClickListener extends MouseAdapter {...} can be a private

inner class: is only needed once, and only inside the containing class

08-5

3/15/2003 (c) 2001-2002, University of Washington Events-17

Solution: Anonymous Inner Classes
• For the mouse listener, all we need to do is create one

instance of the inner class and add it as a mouse listener
• Doesn’t really need a name(!)

• Solution: create one instance of an anonymous inner class

• Warning!!! Ghastly syntax ahead. Here’s how to create a
new object of an anonymous inner class
new <classname> (<constructor parameters>) { <method overrides>

}

3/15/2003 (c) 2001-2002, University of Washington Events-18

Example: Constructor for Graphics View
public BallGraphicsView() {

super();
// Create inner class instance to listen for mouse clicks

this.addMouseListener(
new MouseAdapter() { // anon inner class extending MouseAdapter

public void mouseClicked(MouseEvent e) {
if (model != null) {

model.add(randomBall(e.getX(), e.getY()));
} //end overriden method mouseClicked

}

} //end anon class extending MouseAdapter
);

} //end method BallGraphicsView

3/15/2003 (c) 2001-2002, University of Washington Events-19

Summary
• Event-driven programming

• Event objects

• Event listeners – anything that implements the relevant interface
• Must register with object generating events as a listener

• Listener objects – handle events by passing them along to other
objects

• Event adaptor classes – implementations of event interfaces with
empty methods

• Extend and override only what you want

• Commonly used to create instances of anonymous inner classes that listen for
events

