
CSE 143 V

V-13/4/2003

CSE 143

MergeSort

N&H Exercise 13.4, Exercise 17.3

V-23/4/2003

Divide & Conquer Revisited

•Quicksort illustrates “Divide and Conquer”
approach:
•1. Divide the array into two parts, in some sensible way

Quicksort: "Partition"

•2. Sort the two parts separately (recursively)

•3. Recombine the two halves easily
Quicksort: nothing to do at this step

•Mergesort takes similar steps
•1. Divide the array
•2. Sort the parts recursively

•3. Recombine the parts

V-33/4/2003

Mergesort
•1. Split in half
• just take the first half and the second half of the array,
without rearranging
•sort the halves separately

•3. Combining the sorted halves (“merge”)
•repeatedly pick the least element from each array
•compare, and put the smaller in the resulting array
•example: if the two arrays are

1 12 15 20

5 6 13 21 30
The "merged" array is

1 5 6 12 13 15 20 21 30

•note: we will need a temporary result array

V-43/4/2003

Mergesort Code
// Sort A[0..N-1] into ascending order

void mergesort(int A[], int N) {

mergesort_help(A, 0, N-1);

}

// Sort A[lo..hi] into ascending order

void mergesort_help(int A[],int lo,int hi) {

if (lo < hi) {

int mid = (lo + hi) / 2;

mergesort_help(A, lo, mid);

mergesort_help(A, mid + 1, hi);

merge(A, lo, mid, hi);

}

}

CSE 143 V

V-53/4/2003

Merge Code
// merge sequences A[lo..mid] & A[mid+1..hi],
// leaving merged result in A[lo..hi]
void merge(int A[], int lo, int mid, int hi){

int left = lo; int right = mid + 1;

int tempArray[MAX_SIZE]; //C++ notation – not valid Java

for (int i = 0; i <= hi-lo; ++i) {

assert (left <= mid || right <= hi);

assert (left <= mid+1 && right <= hi+1);

if (right == hi+1

|| (left <= mid) && (A[left] < A[right]))

tempArray[i] = A[left++];

else

tempArray[i] = A[right++];

}
for (i = 0; i <= hi-lo; ++i)

A[lo + i] = tempArray[i];

}
V-63/4/2003

Mergesort Example
8 4 2 9 5 6 1 7

V-73/4/2003

Mergesort Complexity
•Time complexity of merge() = O(____)
•N is size of the part of the array being sorted

•Recursive calls:
•Two recursive calls at each level of recursion, each does
“half” the array at a cost of O(N/2)

•How many levels of recursion?

V-83/4/2003

Mergesort Recursion

N

N/2 N/2

N/4 N/4 N/4 N/4

2

1 1

2

1 1

2

1 1

2

1 1...

... ...

All boxes are executed

Total work at each level is O(N)
O()
levels

CSE 143 V

V-93/4/2003

Mergesort Space Complexity

•"Efficiency" refers to use of resources
•Very often time (number of steps) is the resource

•Could also be space (memory)

•Mergesort needs a temporary array at each call
•Total temp. space is N at each level

•Space complexity of O(N*logN)

•Compare with Quicksort, Selection Sort,etc:
•None of them required a temp array

•All were "in-place" sorts: space complexity O(N)

V-103/4/2003

External Sorting
•Random Factoid: Merging is the usual basis for
sorting large data files
•Sometimes called "external" sorting

•Big files won't fit into memory all at once
•Pieces of the file are brought into memory, sorted
internally, written out to sorted "runs" (subfiles)
and then merged.
•Goes all the way back to early computers
•Main memories and disks were extremely small
•Large data files were stored on tape, which had (and still
have) extremely high storage capacities

