
16-1

3/4/2003 (c) 2001-2003, University of Washington 16-1

CSE 143 Java

Sorting

3/4/2003 (c) 2001-2003, University of Washington 16-2

Sorting
• Binary search is a huge speedup over sequential search

• But requires the list be sorted

• Slight Problem: How do we get a sorted list?
• Maintain the list in sorted order as each word is added
• Sort the entire list when needed

• Many, many algorithms for sorting have been invented and
analyzed

• Our algorithms all assume the data is already in an array
• Other starting points and assumptions are possible

3/4/2003 (c) 2001-2003, University of Washington 16-3

Insert for a Sorted List
• Exercise: Assume that words[0..size-1] is sorted. Place new word in

correct location so modified list remains sorted
• Assume that there is spare capacity for the new word (what kind of condition is

this?)

• Before coding:
• Draw pictures of an example situation, before and after
• Write down the postconditions for the operation

// given existing list words[0..size-1], insert word in correct place and increase size
void insertWord(String word) {

size++;
}

3/4/2003 (c) 2001-2003, University of Washington 16-4

Insertion Sort
• Once we have insertWord working...
• We can sort a list in place by repeating the insertion

operation
void insertionSort() {

int finalSize = size;
size = 1;

for (int k = 1; k < finalSize; k++) {
insertWord(words[k]);

}

}

16-2

3/4/2003 (c) 2001-2003, University of Washington 16-5

Insertion Sort As A Card Game Operation
• A bit like sorting a hand full of cards dealt one by one:

• Pick up 1st card – it's sorted, the hand is sorted
• Pick up 2nd card; insert it after or before 1st – both sorted

• Pick up 3rd card; insert it after, between, or before 1st two
• …

• Each time:
• Determine where new card goes

• Make room for the newly inserted member.

3/4/2003 (c) 2001-2003, University of Washington 16-6

Insertion Sort As Invariant Progression

sorted unsorted

3/4/2003 (c) 2001-2003, University of Washington 16-7

Insertion Sort
Code (C++)

void insert(int list[], int n) {
int i;
for (int j=1 ; j < n; ++j) {

// pre: 1<=j && j<n && list[0 ... j-1] in sorted order
int temp = list[j];
for (i = j-1 ; i >= 0 && list[i] > temp ; --i) {

list[i+1] = list[i] ;
}
list[i+1] = temp ;
// post: 1<=j && j<n && list[0 ... j] in sorted order

}
}

sorted unsorted

sorted unsorted

3/4/2003 (c) 2001-2003, University of Washington 16-8

Insertion Sort Trace
• Initial array contents

0 pear
1 orange

2 apple
3 rutabaga
4 aardvark
5 cherry

6 banana
7 kumquat

16-3

3/4/2003 (c) 2001-2003, University of Washington 16-9

Insertion Sort Performance
• Cost of each insertWord operation:

• Number of times insertWord is executed:

• Total cost:

• Can we do better?

3/4/2003 (c) 2001-2003, University of Washington 16-10

Analysis
• Why was binary search so much more effective than

sequential search?
• Answer: binary search divided the search space in half each time;

sequential search only reduced the search space by 1 item

• Why is insertion sort O(n2)?
• Each insert operation only gets 1 more item in place at cost O(n)

• O(n) insert operations

• Can we do something similar for sorting?

3/4/2003 (c) 2001-2003, University of Washington 16-11

Where are we on the chart?

N log2N 5N N log2N N2 2N

===

8 3 40 24 64 256

16 4 80 64 256 65536

32 5 160 160 1024 ~109

64 6 320 384 4096 ~1019

128 7 640 896 16384 ~1038

256 8 1280 2048 65536 ~1076

10000 13 50000 105 108 ~103010

3/4/2003 (c) 2001-2003, University of Washington 16-12

Divide and Conquer Sorting
• Idea: emulate binary search in some ways

1. divide the sorting problem into two subproblems;

2. recursively sort each subproblem;

3. combine results

• Want division and combination at the end to be fast

• Want to be able to sort two halves independently
• This is a an algorithm strategy known as “divide and

conquer”

16-4

3/4/2003 (c) 2001-2003, University of Washington 16-13

Quicksort
• Invented by C. A. R. Hoare (1962)
• Idea

• Pick an element of the list: the pivot

• Place all elements of the list smaller than the pivot in the half of the
list to its left; place larger elements to the right

• Recursively sort each of the halves

• Before looking at any code, see if you can draw pictures
based just on the first two steps of the description

3/4/2003 (c) 2001-2003, University of Washington 16-14

Code for QuickSort
// Sort words[0..size-1]

void quickSort() {
qsort(0, size-1);

}

// Sort words[lo..hi]
void qsort(int lo, int hi) {

// quit if empty partition
if (lo > hi) { return; }

int pivotLocation = partition(lo, hi); // partition array and return pivot loc
qsort(lo, pivotLocation-1);
qsort(pivotLocation+1, hi);

}

3/4/2003 (c) 2001-2003, University of Washington 16-15

Recursion Analysis
• Base case? Yes.

// quit if empty partition
if (lo > hi) { return; }

• Recursive cases? Yes
qsort(lo, pivotLocation-1);
qsort(pivotLocation+1, hi);

• Observation: recursive cases work on a smaller subproblem, so
algorithm will terminate

3/4/2003 (c) 2001-2003, University of Washington 16-16

A Small Matter of Programming
• Partition algorithm

• Pick pivot

• Rearrange array so all smaller element are to the left, all larger to
the right, with pivot in the middle

• Partition is not recursive
• Fact of life: partition is tricky to get right
• How do we pick the pivot?

• For now, keep it simple – use the first item in the interval

• Better strategies exist

16-5

3/4/2003 (c) 2001-2003, University of Washington 16-17

Partition design
• We need to partition words[lo..hi]
• Pick words[lo] as the pivot
• Picture:

3/4/2003 (c) 2001-2003, University of Washington 16-18

• Use first element of array section as the pivot

• Invariant:

A Partition Implementation

A x <=x unprocessed >x

lo L R hi

pivot

3/4/2003 (c) 2001-2003, University of Washington 16-19

Partition Algorithm: PseudoCode
The two-fingered method

// Partition words[lo..hi]; return location of pivot in range lo..hi
int partition(int lo, int hi)

3/4/2003 (c) 2001-2003, University of Washington 16-20

Partition Test
• Check: partition(0,7)

0 orange
1 pear

2 apple
3 rutabaga
4 aardvark
5 cherry

6 banana
7 kumquat

16-6

3/4/2003 (c) 2001-2003, University of Washington 16-21

Complexity of QuickSort
• Each call to Quicksort (ignoring recursive calls):

• One call to partition = O(n), where n is size of part of
array being sorted
Note: This n is smaller than the N of the original problem

• Some O(1) work
• Total = O(n) for n the size of array part being sorted

• Including recursive calls:
• Two recursive calls at each level of recursion, each partitions “half”

the array at a cost of O(N/2)

• How many levels of recursion?

3/4/2003 (c) 2001-2003, University of Washington 16-22

QuickSort (Ideally)

N

N/2 N/2

N/4 N/4 N/4 N/4

1

0 0

1

0 0

1

0 0

1

0 0...

... ...

All boxes are executed (except
some of the 0 cases)

Total work at each level is O(N)

3/4/2003 (c) 2001-2003, University of Washington 16-23

QuickSort Performance (Ideal Case)
• Each partition divides the list parts in half

• Sublist sizes on recursive calls: n, n/2, n/4, n/8….

• Total depth of recursion: __________________

• Total work at each level: O(n)

• Total cost of quicksort: ________________ !

• For a list of 10,000 items
• Insertion sort: O(n2): 100,000,000

• Quicksort: O(n log n): 10,000 log2 10,000 = 132,877

3/4/2003 (c) 2001-2003, University of Washington 16-24

Best Case for QuickSort

• Assume partition will split array exactly in half

• Depth of recursion is then log2 N

• Total work is O(N)*O(log N) = O(N log N), much
better than O(N2) for selection sort

• Example: Sorting 10,000 items:

• Selection sort: 10,0002 = 100,000,000

• Quicksort: 10,000 log2 10,000 ≈ 132,877

16-7

3/4/2003 (c) 2001-2003, University of Washington 16-25

Worst Case for QuickSort
• If we’re very unlucky, then each pass through partition

removes only a single element.

• In this case, we have N levels of recursion rather than log2N.
What’s the total complexity?

1 2 3 4

1 2 3 4

2 3 4

3 4

1 2 3 4

3/4/2003 (c) 2001-2003, University of Washington 16-26

QuickSort Performance (Worst Case)
• Each partition manages to pick the largest or smallest item in

the list as a pivot
• Sublist sizes on recursive calls:

• Total depth of recursion: __________________
• Total work at each level: O(n)

• Total cost of quicksort: ________________ !

3/4/2003 (c) 2001-2003, University of Washington 16-27

Worst Case vs Average Case
• QuickSort has been shown to work well in the average case

(mathematically speaking)

• In practice, Quicksort works well, provided the pivot is picked
with some care

• Some strategies for choosing the pivot:
• Compare a small number of list items (3-5) and pick the median for

the pivot
• Pick a pivot element randomly in the range lo..hi

3/4/2003 (c) 2001-2003, University of Washington 16-28

QuickSort as an Instance of Divide and Conquer

Surprise! Nothing to do3. Combine subsolutions
to get overall solution

Recursively sort each of the halves2. Solve subproblems
separately (and
recursively)

Pick an element of the list: the pivot
Place all elements of the list smaller than the
pivot in the half of the list to its left; place larger
elements to the right

1. Divide

QuickSortGeneric Divide and
Conquer

16-8

3/4/2003 (c) 2001-2003, University of Washington 16-29

Another Divide-and-Conquer Sort: Mergesort

• 1. Split array in half
• just take the first half and the second half of the array, without

rearranging

• 2. Sort the halves separately
• 3. Combining the sorted halves (“merge”)

• repeatedly pick the least element from each array
• compare, and put the smaller in the resulting array
• example: if the two arrays are

1 12 15 20
5 6 13 21 30

The "merged" array is
1 5 6 12 13 15 20 21 30

• note: we will need a temporary result array
3/4/2003 (c) 2001-2003, University of Washington 16-30

Summary
• Recursion

• Methods that call themselves
• Need base case(s) and recursive case(s)
• Recursive cases need to progress toward a base case
• Often a very clean way to formulate a problem (let the function call

mechanism handle bookkeeping behind the scenes)

• Divide and Conquer
• Algorithm design strategy that exploits recursion
• Divide original problem into subproblems
• Solve each subproblem recursively
• Can sometimes yield dramatic performance improvements

