CSE 143 Java

Searching and Recursion
N&H Chapters 13, 17

Overview

31512003 0 2001-2003, Univrsity of Washington 1501

* Topics

» Maintaining an ordered list

« Sequential and binary search

* Recursion

« Sorting: insertion sort and QuickSort
* Reading

* Textbook: ch. 13 & sec. 17.1-17.3

31512003 0 2001-2003, Univrsity of Washington

1502

Problem: A Word Dictionary

* Suppose we want to maintain a real dictionary. Data is a list
of <word, definition> pairs -- a "Map" structure
<‘aardvark’, “an animal that starts with an A and ends with a K">
<‘apple”, “a leading product of Washington state™>
<*banana’”, “a fruitimported from somewhere else”>
etc.
+ We want to be able to do the following operations efficiently
« Look up a definition given a word (key)
« Retrieve sequences of definitions in alphabetical order

Representation

31512003 0 2001-2003, Univrsity of Washington 1563

+ Need to pick a data structure

» Analyze possibilities based on cost of operations
search access next in order
« unordered list

« hash map

o2

31512003 0 2001-2003, Univrsity of Washington

1504

16-1

Ordered List

» One solution: keep list in alphabetical order

» To simplify the explanations for the present: we'll treat the list
as an array of strings, and assume it has sufficient capacity

Sequential (Linear) Search

+ Assuming the list is initialized in alphabetical order, we can
use a linear search to locate a word
Il return location of word in words, or -1 if found

* Binary search:
« Examine middle element

« Search either left or right half depending on whether desired word
precedes or follows middle word alphabetically

* The list being sorted is a precondition of binary search.

« The algorithm is not guaranteed to give the correct answer if the
precondition is violated.

31512003 0 2001-2003, Univrsity of Washington 1507

P 1 int find(Stri d
to add additional word/def's when needed " ::tf(_”O”_g word){
0 aardvark Il'instance variable of the Ordered List class while (k '(size €& \word.equals(words[K])
1 apple String[] words; // list is stored in words[0..size-1] Kt
2 banana int size; I1'# of words }
3 cherry . . X . . . ’
if (k <size) { return k; } else { return—1;} // lousy indenting to fit on slide
g kumauat } /I don’t do this at home
orange . . .
6 pear » Time for list of size n:
7 rutabaga
3/15/2003 (<) 2001-2003, University of Washington 1505 3/15/2003 (<) 2001-2003, University of Washington 1506
Can we do better? Binary Search
«Yes! If arrav is sorted /I Return location of word in words, or -1 if not found
: y int find (String word) {

return bSearch(0, size-1);
}
/I Return location of word in wordsflo..hi] or -1 if not found
int bSearch(String word, int lo, int hi) {

I return =1 if interval lo..hi is empty

if (lo>hi) {return -1;}

11 search words]lo..hi]

intmid = (lo + hi) / 2;

int comp = word.compareTo(words[mid]);

if (comp == 0) { return mid; }

elseif (comp <0) {return i}
else*comp>0*{return ____ :}
}
3/15/2003 (<) 2001-2003, University of Washington 1508

16-2

"The Word Must Be Where?" Three Cases

int comp = word.compareTo(words[mid]);

if (comp ==0) {
Ilthe word must be where?
return ;
}

elseif (comp <0) {
Ilthe word must be where?
return___~~~
}
else { /lcomp>0
Ilthe word must be where?

"Where?" Answered

int comp = word.compareTo(words[mid]);
if (comp ==0) {
/lthe word must be where? at position "mid"
retun
}
elseif (comp <0) {
/lthe word must be where? in the lower half of the array
return B
}
else { /lcomp>0
/lthe word must be where? in the upper half of the array

return ; return ;
} }
3/15/2003 (<) 2001-2003, University of Washington 1509 3/15/2003 (<) 2001-2003, University of Washington 15010
- M mw 1]
Return Values: Three Cases What is "The Lower Half"?
int comp = word.compareTo(words[mid]); elseif (comp <0) {
if (comp == 0){ N) /lthe word must be where? in the lower half of the array
Iithe word must be where? at position "mid” return /the result of searching the lower half of the array*/
return mid; :
}

else if (comp < 0) {
Ilthe word must be where? in the lower half of the array
return /*the result of searching the lower half of the array*/

else { /lcomp>0
Iithe word must be where? in the upper half of the array
return /*the result of searching the upper half of the array*/

31512003 0 2001-2003, Univrsity of Washington

15011

Remember the method header was:
Il Return location of word in wordsf[lo..hi] or -1 if not found
int bSearch(String word, int lo, int hi) {

So the lower half starts at and ends at
return /*the result of searching the lower half of the array*/ becomes
return /*the result of searching the array from ___to __ */

31512003 0 2001-2003, Univrsity of Washington 15012

16-3

Comments Complete, Code Incomplete

int comp = word.compareTo(words[mid]);

if (comp == 0) {
Ilthe word must be where? at position "mid"
return mid,

else if (comp < 0) {
Iithe word must be where? in the lower half of the array
return /*the result of searching from lo to mid-1*

else { /lcomp>0
Iithe word must be where? in the upper half of the array
return /*the result of searching from mid+1 to hi*/

Last Piece of the Puzzle

31512003 0 2001-2003, Univrsity of Washington 15013

lr;lurn Pthe result of searching from lo to mid-1*/
}
How can we get the "result of searching from lo to mid-1"?
We have a method called bSearch that can search an array within a range of indexes.

I Return location of word in words[x.y] or -1 if not found
int bSearch(String word, int x, int y)

Letx be lo, lety be mid-1
bSearch(String word, int lo, int mid-1)

31512003 0 2001-2003, Univrsity of Washington 15014

Recursion

+ A method (function) that calls itself is recursive
* Nothing really new here
* Method call review:

« Evaluate argument expressions

« Allocate space for parameters and local variables of function being
called

« Initialize parameters with argument values
« Then execute the function body
+ What if the function being called is the same one that is
doing the calling?
« Answer: no difference at all!

Wrong Way to Think About It

31512003 0 2001-2003, Univrsity of Washington 15015

31512003 0 2001-2003, Univrsity of Washington 15016

16-4

Right Way to Think About It

Trace

bSearch

» Trace execution of find(“orange”)

0 aardvark
1 apple
2 banana
3 cherry
4 kumquat
bSeard 5 orange
6 pear
7 rutabaga
3/15/2003 (<) 2001-2003, University of Washington 15017 3/15/2003 (<) 2001-2003, University of Washington 15018
Trace Performance of Binary Search
» Trace execution of find(“kiwi") * Analysis
0 aardvark * Time (number of steps) per each recursive call:
1 apple « Number of recursive calls:
2 banana .
« Total time:
3 cherry)
4 kumquat * A picture helps
5 orange
6 pear
7 rutabaga
3/15/2003 (<) 2001-2003, University of Washington 15019 3/15/2003 (<) 2001-2003, University of Washington 15020

16-5

Binary Search Sizes

All paths from thesize N case Any given run of B.S. will

to asize 0 case are the same follow only one path from
length: 1+1og,N theroot to aleaf

Na | v e | e

1]

[eki0] [O][0]

0 2001-2003, Univrsity of Washington

Linear Search vs. Binary Search

+ Compare to linear search

« Time to search 10, 100, 1000, 1,000,000 words
linear

binary

« What is incremental cost if size of list is doubled?
» Why is Binary search faster?
* The data structure is the same
« The precondition on the data structure is different: stronger

« Recursion itself is not an explanation
One could code linear search using recursion

31512003 0 2001-2003, Univrsity of Washington 15022

More About Recursion

A recursive function needs three things to work properly

1. One or more base cases that are not recursive
o if (lo> hi) {return-1; }
« if (comp == 0) { return mid; }

2. One or more recursive cases that handle a else if
(comp < 0) {return bsearch(word,lo,mid-1); }
. else /*comp > 0 * { return bsearch(word,mid+1,hi); }

3. The recursive cases must lead to “smaller” instances of
the problem

« "Smaller means: closer to a base case
+ Without "smaller", what might happen?

31512003 0 2001-2003, Univrsity of Washington 15023

Recursion vs. Iteration

« Recursion can completely replace * Iteration can completely replace

iteration recursion
» Some rewriting of the algorithm is » Some rewriting of the algorithm is
necessary necessary
« usually minor « often major
+ Some languages have recursion only « A few (mostly older languages) have
« Recursion is often more elegant but iteration only
less efficient * Iteration is not always elegant but is

« Recursion is a natural for certain usually efficient
algorithms and data structures (where * Iteration is natural for linear (non-
branching is required) branching) algorithms and data
« Useful in "divide and conquer” situations structures

31512003 0 2001-2003, Univrsity of Washington 15024

16-6

Recursion and Elegance

*Problem: reverse a linked list

+ Constraints: no last pointer, no numElems count, no
backward pointers, no additional data structures
+Non-recursive solution:
stryit!

Result of Trying To Reverse a Linked List Iteratively

31512003 0 2001-2003, Univrsity of Washington 15025

« Problem: reverse a linked list

« Constraints: no last pointer, no numElems count, no backward

pointers, no additional data stiuctures

« Non-recursive solution:
* try itand weep

31512003 0 2001-2003, Univrsity of Washington 15026

Recursive Solution: Simple, Elegant

* Problem: reverse a linked list

« Constraints: no last pointer, no numElems count, no backward pointers, no additional
data structures

newlList = reverse(oldList.first);

List reverse(Link firstLink) {
if (firstLink == null) { return new SimpleList(); }
return reverse(firstLink.next).add(firstLink.data));

« Better hope this is a question on your Microsoft job interview!
* PS: Did we cheat??

31512003 0 2001-2003, Univrsity of Washington 15027

16-7

