CSE 143 Java

Program Efficiency & Introduction to Complexity Theory

2/19/2003 (c) 2001-2003, University of Washington 14-1

GREAT IDEAS IN COMPUTER SCIENCE

ANALYSIS OF ALGORITHMIC COMPLEXITY

(c) 2001-2003, University of Washington 14-2

Overview

- Topics
- · Measuring time and space used by algorithms
- · Machine-independent measurements
- · Costs of operations
- Comparing algorithms
- Asymptotic complexity O() notation and complexity classes
- · Reading:
- Textbook: Ch. 21

2/19/2003 (c) 2001-2003, University of Washington 14-3

Comparing Algorithms

- Example: We've seen two different list implementations
 - Dynamic expanding array
 - Linked list
- Which is "better"?
- · How do we measure?
- Stopwatch? Why or why not?

Program Efficiency & Resources

- Goal: Find way to measure "resource" usage in a way that is independent of particular machines/implementations
- Resources
- · Execution time
- · Execution space
- · Network bandwidth
- others
- · We will focus on execution time
- Basic techniques/vocabulary apply to other resource measures

2/19/2003

(c) 2001-2003, University of Washington

14-5

Example

• What is the running time of the following method?

```
// Return the sum of the elements in array.
double sum(double[] rainMeas) {
    double ans = 0.0;
    for (int k = 0; k < rainMeas.length; k++) {
        ans = ans + rainMeas[k];
    }
    return ans;
}
```

· How do we analyze this?

2/19/2003

(c) 2001-2003, University of Washington

Analysis of Execution Time

- First: describe the size of the problem in terms of one or more parameters
 - · For sum, size of array makes sense
 - Often size of data structure, but can be magnitude of some numeric parameter, etc.
- 2. Then, count the number of steps needed as a function of the problem size
- Need to define what a "step" is.
- · First approximation: one simple statement
- More complex statements will be multiple steps

2/19/2003

(c) 2001-2003, University of Washington

Cost of operations: Constant Time Ops

- Constant-time operations: each take one abstract time "step"
- Simple variable declaration/initialization (double sum = 0.0;)
- Assignment of numeric or reference values (var = value;)
- Arithmetic operation (+, -, *, /, %)
- · Array subscripting (a[index])
- Simple conditional tests (x < y, p != null)
- Operator new itself (not including constructor cost)
 Note: new takes significantly longer than simple arithmetic or assignment, but its cost is independent of the problem we're trying to analyze
- Note: watch out for things like method calls or constructor invocations that look simple, but are expensive

2/19/2003

(c) 2001-2003, University of Washington

14-6

Cost of operations: Zero-time Ops

- · Compiler can sometimes pay the whole cost of setting up operations
- · Nothing left to do at runtime
- · Variable declarations without initialization double[] overdrafts;
- Variable declarations with compile-time constant initializers static final int maxButtons = 3;
- · Casts (of reference types, at least)
 - ... (Double) checkBalance

2/19/2003

(c) 2001-2003, University of Washington

Sequences of Statements

· Cost of

S1; S2; ... Sn

is sum of the costs of S1 + S2 + \dots + Sn

2/19/2003

14-9

(c) 2001-2003, University of Washington

Conditional Statements

• The two branches of an if-statement might take different times. What to do??

if (condition) { S1; } else {

- · Hint: Depends on analysis goals
- "Worst case": the longest it could possibly take, under any circumstances
 "Average case": the expected or average number of steps
 "Best case": the shortest possible number of steps, under some special circumstance
- · Generally, worst case is most important to analyze

(c) 2001-2003, University of Washington

Analyzing Loops

- Basic analysis
 - 1. Calculate cost of each iteration
- 2. Calculate number of iterations
- 3. Total cost is the product of these

Caution -- sometimes need to add up the costs differently if cost of each iteration is not roughly the same

- Nested loops
 - Total cost is number of iterations or the outer loop times the cost of the inner loop
 - same caution as above

(c) 2001-2003, University of Washington

14-10

Method Calls

- Cost for calling a function is cost of...
 - cost of evaluating the arguments (constant or non-constant)
 - + cost of actually calling the function (constant overhead)
 - + cost of **passing** each parameter (normally constant time in Java for both numeric and reference values)
 - + cost of executing the function body (constant or non-constant?)
 - System.out.print(this.lineNumber); System.out.println("Answer is " + Math.sqrt(3.14159));
- Terminology note: "evaluating" and "passing" an argument are two different things!

2/19/2003 (c) 2001-2003, University of Washington

Exact Complexity Function

- Careful analysis of an algorithm leads to an algebraic formula
- The "exact complexity function" gives the number of steps as a function of the problem size
- · What can we do with it:
 - Predict running time in a particular case (given n, given type of computer)?
- Predict comparative running times for two different n (on same type of computer)?
- \bullet ***** Get a general feel for the potential performance of an algorithm
- ***** Compare predicted running time of two different algorithms for the same problem (given same n)

(c) 2001-2003, University of Washington

A Graph is Worth A Bunch of Words

- Graphs are a good tool to illustrate, study, and compare complexity functions
- $\bullet \, \text{Fun math review for you} \\$
 - · How do you graph a function?
- What are the shapes of some common functions? For example, ones mentioned in these slides or the textbook.

2/19/2003 (c) 2001-2003, University of Washington

14-15

Exercise

- Analyze the running time of printMultTable
- Pick the problem size
- · Count the number of steps

```
// print multiplication table with

// n rows and columns

void printMult Table(int n) {

for (int k=0; k <=n; k++) {

printRow(k, n);

}
```

// print row r with length n of a
multiplication table
void printRow(int r, int n) {
 for (int k = 0: k <= r; k++) {
 System.out.print(r"k + " ");
 }
 System.out.println();
}</pre>

Comparing Algorithms

- Suppose we analyze two algorithms and get these times (numbers of steps):
- Algorithm 1: 37n + 2n² + 120
- Algorithm 2: 50n + 42

How do we compare these? What really matters?

- Answer: In the long run, the thing that is most interesting is the cost as the problem size n gets large
 - What are the costs for n=10, n=100; n=1,000; n=1,000,000?
 - Computers are so fast that how long it takes to solve small problems is rarely of interest

2/19/2003 (c) 2001-2003, University of Washington 14-17

Orders of Growth						
Examples:						
N	$\log_2 N$	5N	N log ₂ N	N^2	2 ^N	
8	3	40	24	64	256	
16	4	80	64	256	65536	
32	5	160	160	1024	~109	
64	6	320	384	4096	~1019	
128	7	640	896	16384	~1038	
256	8	1280	2048	65536	~1076	
10000	13	50000	10 ⁵	108	~103010	
2/19/2003	•	(c) 2001-2003, University of Washington 14-18				

Asymptotic Complexity

- Asymptotic: Behavior of complexity function as problem size gets large
 - Only thing that really matters is higher-order term
 - Can drop low order terms and constants
- The asymptotic complexity gives us a (partial) way to answer "which algorithm is more efficient"
- Algorithm 1: $37n + 2n^2 + 120$ is proportional to n^2
- Algorithm 2: 50n + 42 is proportional to n
- Graphs of functions are handy tool for comparing asymptotic behavior

2/19/2003

(c) 2001-2003, University of Washington

Big-O Notation

• Definition: If f(n) and g(n) are two complexity functions, we say that

f(n) = O(g(n))

(pronounced f(n) is O(g(n)) or is order g(n))

if there is a constant c such that

 $f(n) \le c \cdot g(n)$

for all sufficiently large n

2/19/2003

Exercises

• Prove that 5n+3 is O(n)

• Prove that $5n^2 + 42n + 17$ is $O(n^2)$

2/19/2003

(c) 2001-2003, University of Washington

Implications

- The notation f(n) = O(g(n)) is not an equality
- Think of it as shorthand for
 - "f(n) grows at most like g(n)" or
 - "f grows no faster than g" or
 - "f is bounded by g"
- O() notation is a worst-case analysis
- · Generally useful in practice
- Sometimes want average-case or expected-time analysis if worst-case behavior is not typical (but often harder to analyze)

2/19/2003

14-21

(c) 2001-2003, University of Washington

Complexity Classes

- Several common complexity classes (problem size n)
 - Constant time: O(k) or O(1)
- Logarithmic time: O(log n) [Base doesn't matter. Why?]
- Linear time: O(n)"n log n" time: O(n log n)
- Quadratic time: O(n²)
 Cubic time: O(n³)
- -----
- Exponential time: O(kn)
- O(nk) is often called polynomial time

/19/2003

(c) 2001-2003, University of Washington

Rule of Thumb

- \bullet If the algorithm has polynomial time or better: practical
- typical pattern: examining all data, a fixed number of times
- If the algorithm has exponential time: impractical
- typical pattern: examine *all combinations* of data
- · What to do if the algorithm is exponential?
 - Try to find a different algorithm
 - Some problems can be proved not to have a polynomial solution
 - Other problems don't have known polynomial solutions, despite years of study and effort.
 - Sometimes you settle for an approximation: The correct answer most of the time, or An almost-correct answer all of the time

2/19/2003

Big-O Arithmetic

- For most commonly occurring functions, comparison can be enormously simplified with a few simple rules of thumb.
- Memorize complexity classes in order from smallest to largest: O(1), $O(\log n)$, O(n), $O(n \log n)$, $O(n^2)$, etc.
- Ignore constant factors $300n + 5n^4 + 6 + 2^n = O(n + n^4 + 2^n)$
- Ignore all but highest order term

 $O(n + n^4 + 2^n) = O(2^n)$

2/19/2003 (c) 2001-2003, University of Washington 14-25

Analyzing List Operations (1)

- We can use O() notation to compare the costs of different list implementations
- · Construct empty list
- · Size of the list
- isEmpty
- clear

2/19/2003 (c) 2001-2003, University of Washington 14-26

Analyzing List Operations (2)

- Operation
- Dynamic Array

Linked List

- \bullet Add item to end of list
- · Locate item (contains, indexOf)
- Add or remove item once it has been located

2/19/2003

(c) 2001-2003, University of Washington

Wait! Isn't this totally bogus??

- Write better code!!
 - More clever hacking in the inner loops
 (assembly language, special-purpose hardware in extreme cases)
- · Moore's law: Speeds double every 18 months
- · Wait and buy a faster computer in a year or two!

• But ...

2/19/2003

How long is a Computer-Day?

- If a program needs f(n) microseconds to solve some problem, what is the largest single problem it can solve in one full day?
- One day = 1,000,000*24*60*60 = 106*24*36*10² = 106*25*36*10² = 106*900*10² = **9*10**9

14-29

• To calculate, set $f(n) = 9*10^9$ and solve for n in each case

f(n)	n such that $f(n) = one day$
n	9 * 10 ¹⁰
5n	2.5 * 10 ¹⁰
$n log_2 n$	3 * 10 ⁹
n ²	3 * 10 ⁵
n ³	4 * 10 ³
2 ⁿ	36

2/19/2003 (c) 2001-2003, University of Washington

Speed Up The Computer by 1,000,000

- Suppose technology advances so that a future computer is 1,000,000 fast than today's.
- In one day there are now = 9*109*103 ticks available
- To calculate, set $f(n) = 9*10^{9+3}$ and solve for n in each case

f(n)	original n for one d	ay new n for one day	
n 5n n $\log_2 n$ n ² n ³	9 * 10 ¹⁰ 2.5 * 10 ¹⁰ 3 * 10 ⁹ 3 * 10 ⁵ 4 * 10 ³	etc.	
2 ⁿ	36		
2/19/2003	(c) 2001-2003, University of Washington 14-30		

How Much Does 1,000,000-faster Buy?

 \bullet Divide the new max n by the old max n, to see how much more we can do in a day

f(n)	n for 1 day	million x, n for 1 day
n	9×10^{10}	million times larger
5n	2 x 10 ¹⁰	million times larger
$n log_2 n$	3×10^{9}	60,000 times larger
n²	3×10^{5}	1,000 times larger
n³	4×10^{3}	100 times larger
2 ⁿ	36	+20 larger

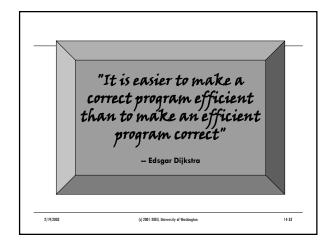
2/19/2003 (c) 2001-2003, University of Washington 14-31

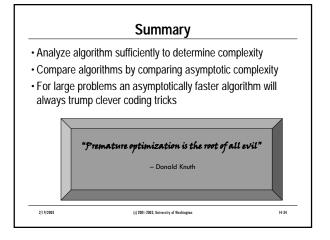
Practical Advice For Speed Lovers

- First pick the right algorithm and data structure
- Implement it carefully, insuring correctness
- Then optimize for speed but only where it matters
 Constants do matter in the real world
 Clever coding can speed things up, but result can be harder to read, modify
- Current state-of-the-art approach: Use measurement tools to find hotspots, then tweak those spots.

"Premature optimization is the root of all evil" - Donald Knuth

2/19/2003 (c) 2001-2003, University of Washington 14-32





Computer Science Note

- Algorithmic complexity theory is one of the key intellectual contributions of Computer Science
- · Typical problems
- · What is the worst/average/best-case performance of an algorithm?
- What is the best complexity bound for all algorithms that solve a particular problem?
- · Interesting and (in many cases) complex, sophisticated math
 - Probabilistic and statistical as well as discrete
- Still some key open problems
 - Most notorious: P ?= NP

2/19/2003