
07-1

1/29/2003 (c) University of Washington 07-1

CSE 143 Java

Errors and Exceptions

Reading: Ch. 18

1/29/2003 (c) University of Washington 07-2

What Can Go Wrong With Programs?
• Programs can have bugs and try to do things they shouldn't.

E.g. try to send a message to null

• Users can ask for things that they shouldn't (we can't control the
user).

E.g. try to withdraw too much money from a bank account

• The environment may not be able to provide some resource that is
needed

Program runs out of memory or disk space
Expected file is not found

Extreme network examples:
Thousands to millions of tiny sensors
Interplanetary Internet

1/29/2003 (c) University of Washington 07-3

Coping Strategies

• Check all user input! (Not doing this has led to many insecurities.)
But what should the program do if it's wrong?

• Be able to test whether resources were unavailable.
But what should the program do if they weren't?

• Other strategies?

1/29/2003 (c) University of Washington 07-4

Reporting Errors with Status Codes
• If a method cannot complete properly because of some

problem, how can it report it to the rest of the program?

• One approach: return a status code (error code)
• Boolean status flags are very common

• A boolean flag: true means OK, false means failure

• Integers or other types could be used
• An integer flag: 0 means OK, 1 means error of kind #1, etc.

• For object return types: null could mean error, non-null could mean
success

07-2

1/29/2003 (c) University of Washington 07-5

Status Codes in BankAccount
• From the original design of the bank account operations:

public boolean deposit (double amount) { return this.updateBalance(amount); }

public boolean withdraw(double amount) { return this.updateBalance(-amount); }

private boolean updateBalance(double amount) {

if (this.balance + amount < 0) {

System.out.println("Sorry, you don't have that much money to withdraw.");
return false;

} else {

this.balance = this.balance + amount;
return true;

}

}

• What's bad about using this boolean error flag (plus a println)?

1/29/2003 (c) University of Washington 07-6

Status Codes: Pro and Con

• Easy to program, in the method that detects the error
myObject methodThatMightFail(…) {

… if (weirdErrorCondition()) { return null;
} else {
//continue and create an object to return

…

}
}

• Can be bothersome for callers (why?)

• Can be unreliable (why?)

1/29/2003 (c) University of Washington 07-7

An Alternative: Throwing Exceptions
• Java (and C++, and many modern languages) include

exceptions as a more sophisticated way to report and
handle errors

• If something bad happens, program can throw an exception
• A throw statement terminates the throwing method

• throw sends back a value, the exception itself.

• So far it sounds a lot like the return statement
• A return statement terminates the method
• return can send a value back to the caller

1/29/2003 (c) University of Washington 07-8

Revised BankAccount Methods
public void deposit (double amount) { this.updateBalance(amount); }
public void withdraw(double amount) { this.updateBalance(-amount); }
private void updateBalance(double amount) {
if (this.balance + amount < 0) {

throw new IllegalArgumentException("insufficient funds");
} else {

this.balance = this.balance + amount;
}

}

• Methods now have void return type, not boolean
• Error message and "return false" replaced with throw of new exception

object
• Callers can chose to ignore the exception, if they don't know how to

cope with it
• It will be passed on to the caller's caller, and so on, to some caller that can cope

07-3

1/29/2003 (c) University of Washington 07-9

Return vs Throw
• A return takes the execution right back to where the method

was called
• Sometimes referred to as the "call site"

• A throw takes the execution to code (the handler)
designated specifically to deal with the exception
• The handler is said to catch the exception

• The handler might not be at or near the call site
• The calling (client) module might not even have a handler

• If a handler doesn't exist somewhere, the program aborts

1/29/2003 (c) University of Washington 07-10

Throw Statement Syntax
• To throw an exception object, use a throw statement

• Syntax pattern:

throw <expression> ;
• The expression must be an object of type throwable

• There are many such classes already defined

• BankAccount example used IllegalArgumentException
• The expression can't be omitted

• But it doesn't just return to the caller, but ends execution of the caller,
and its caller, and so on, until a handler is found (explained later), or
the whole program is terminated

• It's bad practice for a complete program to die with an unhandled exception

1/29/2003 (c) University of Washington 07-11

Exception Objects In Java
• Exceptions are regular objects in Java
• Exception are subclasses of the predefined Throwable class
• Some predefined Java exception classes:

• RuntimeException (a very generic kind of exception)

• NullPointerException

• IndexOutOfBoundsException
• ArithmeticException (e.g. for divide by zero)

• IllegalArgumentException (for any other kind of bad argument)

• Most exceptions have constructors that take a String
argument

1/29/2003 (c) University of Washington 07-12

Throwable/Exception Hierarchy

Throwable

Error Exception

RuntimeException

ArithmeticException

NullPointerException

IllegalArgumentException

...

...

07-4

1/29/2003 (c) University of Washington 07-13

What about Handlers?

• As we said, return and throw have some similarities

• When a method ends as a result of a throw...
• If the caller has a handler, that's where execution

continues

• If the caller doesn't have a handler, then its caller is
checked to see if there is a handler.

• This checking of callers proceeds up the line, until a
handler is found; if there isn't one anywhere, the program
aborts.

• That's the big picture. A few details later.
1/29/2003 (c) University of Washington 07-14

Specifying an Exception Handler
• If a caller knows how to cope with an exception, then it can specify an

appropriate handler using a try-catch block
try {

mySavingsAccount.withdraw(100.00);

myCheckingAccount.deposit(100.00);
} catch (IllegalArgumentException exn) {

System.out.println("Transaction failed: " + exn.getMessage());

}

• The catch part of the block constitutes the handler.
• If an exception is thrown anywhere inside the body of the try block,

that is an instance of IllegalArgumentException or a subclass, then the
exception is caught and the catch block is run

1/29/2003 (c) University of Washington 07-15

Try-Catch Blocks: Syntax
• Syntax:

try {
<body, a sequence of statements>

}
catch (<exception type1> <name1>) {

<handler1, a sequence of statements>
}
catch (<exception type2> <name2>) {

<handler2, a sequence of statements>
}
…

• Can have one or more catch clauses for a single try block

1/29/2003 (c) University of Washington 07-16

Try-Catch Blocks: Semantics
• First evaluate <body>
• If no exception thrown during evaluation of body, or all exceptions that

are thrown are already handled somewhere inside body, then we're
done with the try-catch block; skip the catch blocks

• Otherwise, if an exception is thrown and not handled, then check each
catch block in turn

• See if the exception is an instance of <exception type1>
• If so, then the exception is caught:

Bind <name1> to the exception; execute <handler1>; skip remaining catch blocks and go
to the code after the try-catch block

• If not, then continue checking with the next catch block (if any)

• If no catch block handles the exception, then continue searching for a
handler, e.g. by exiting the containing method and searching the caller
for a try-catch block surrounding the call

07-5

1/29/2003 (c) University of Washington 07-17

Example
• Implement a robust transferTo method on BankAccount,

coping properly with errors that might arise
public class BankAccount {

…
public void transferTo(BankAccount otherAccount, double amount) {

