
06-1

1/29/2003 (c) University of Washington 06-1

CSE 143 Java

Inheritance Tidbits

1/29/2003 (c) University of Washington 06-2

Overview
• An assortment of topics related to inheritance

• Class Object

• toString etc.

• instanceof

• Overloading and overriding

1/29/2003 (c) University of Washington 06-3

Inheritance Reviewed
• A class can be defined as an extension another one

• Inherits all behavior (methods) and state (instance variables) from
superclass

• (But only has direct access to public or protected
methods/variables)

• Use to factor common behavior/state into classes that can
be extended/specialized as needed

• Useful design technique: find a class that is close to what
you want, then extend it and override methods that aren’t
quite what you need

1/29/2003 (c) University of Washington 06-4

Class Object
• In Java’s class model, every class directly or indirectly

extends Object, even if not explicitly declared
class Foo { … } has the same meaning as class Foo extends Object { … }

• Class Object
• is the root of the class hierarchy
• contains a small number of methods which every class inherits and

which can be invoked on any object (mostly...)
toString(), equals(Object), clone(), hashCode(), …

06-2

1/29/2003 (c) University of Washington 06-5

Implications of Object
• Any object can be assigned to a variable of type Object
• Object can be an argument type or a return type
• Arrays and collections of Object are possible

• This is why collections that can hold any object give back
things of type Object

1/29/2003 (c) University of Washington 06-6

More on toString()
• toString() is a method of Object
• Object provides a default implementation of toString()

MyClass#2376ac65

• Most well-designed classes should override toString() to
return a more useful description of an instance

Rectangle[height: 10; width: 20; x: 140; y: 300]
Color[red: 120; green: 60; blue: 240]
(BankAccount: owner=Bill Gates, Balance = beyond your imagination)

• Called by many system methods whenever a printable
version of an object is needed

1/29/2003 (c) University of Washington 06-7

Comparing Objects
• Object defines a boolean function equals to test whether two

objects are the same

• Object's implementation just compares objects for identity,
using ==

• This behavior is often undesirable
• More normal concept of equality:

• obj1.equals(obj2) should return true if obj1 and obj2 represent the
same value

• A class that wants this behavior must override equals()

1/29/2003 (c) University of Washington 06-8

Comparing The Order of Objects

• Many objects have a natural linear or total order
• For any two values, one is always <= the other

• A boolean comparison doesn't tell about relative order
• Type Object does not have a method for this kind of

comparison (why not?)
• The most commonly used order comparison method has this

kind of signature:
int compareTo(Object otherObject)
• return negative, 0, or positive value in a conventional way

• The Comparable interface requires exactly this method to
exist.

06-3

1/29/2003 (c) University of Washington 06-9

Copying Object and clone()
• Review: what does A = B mean? (Hint: draw the picture)

• This behavior is not always desirable

• In Java, the = operator cannot be overridden

• Instead, a method to copy must be written.
• obj.clone() should return a copy of obj with the same value

• Object's implementation just makes a new instance of the same class whose
instance variables have the same values as obj

• Object's implementation is protected!
• If a subclass needs to do something different, e.g. clone some of the instance

variables too, then it should override clone()

• clone cannot be used at will...
• Class must be marked as "Clonable"

1/29/2003 (c) University of Washington 06-10

instanceof (skip for now)
• The expression

<object> instanceof <classOrInterface>

is true if the object is an instance of the given class or interface (or any
subclass of the one given)

• One common use: checking types of generic objects before casting
Monster m = …;
if (m instanceof JumpingMonster) {

JumpingMonster jm = (JumpingMonster) m;

jm.jump(veryHigh);
}

• Often can be replaced by method override and dynamic dispatch
Monster m = …;

m.jumpIfPossible(veryHigh); // Monster does nothing, JumpingMonster overrides to jump

1/29/2003 (c) University of Washington 06-11

Overriding and Overloading
• In spite of the similar names, these are very different
• Overriding: replacing an inherited method in a subclass

class One {

public int method(String arg1, double arg2) { … }
}
class Two extends One {

public int method(String arg1, double arg2) { … }

}

• Argument lists and results must match exactly (number and types)

• Method called depends on actual (dynamic) type of the receiver

1/29/2003 (c) University of Washington 06-12

Overloading
• Overloading: a class may contain multiple definitions for

constructors or methods with the same name, but different
argument lists

class Many {
public Many() { … }
public Many(int x) { … }
public Many(double x, String s) { … }
public void another(Many m, String s) { … }
public int another(String[] names) { … }

• Parameter lists must differ in number and/or type of parameters
Result types can differ, or not

• Method calls are resolved automatically depending on number and
(static) types of arguments – must be a unique best match

06-4

1/29/2003 (c) University of Washington 06-13

Overriding vs Overloading
• Overriding

• Allows subclasses to substitute an alternative implementation of an
inherited method

• Client still only sees one operation in the class's interface

• Overloading
• Allows several different methods to (for convenience) have the

same name
• These are completely independent of each other; they could have

been given different names just as easily
• Client sees all of the overloaded methods in the class's interface

• One is static, one is dynamic: which is which??
• Can be mixed, but please don’t!

