
05-1

1/29/2003 (c) University of Washington 05-1

CSE 143 Java

Abstract Classes and Frameworks

Reading: Ch. 15

1/29/2003 (c) University of Washington 05-2

What is a Generic Animal?
• Purpose of class Animal (base class for Dog and Cat)

• provide common specification for all Animals
• define some instance variables
• provides implementation for some methods

getName(), getSpecies(), getNumberOfLegs(), etc.

• A few puzzlers...
• What noise should a generic Animal make?

Answer: class Animal doesn't have enough information to know!

• Are there really any objects of type Animal?
Really, we have a Dog, or Cat, or Dragonfly, or etc.

• Animal exists to be extended, not used directly to create
instances

1/29/2003 (c) University of Washington 05-3

Abstract Classes

• Main idea: methods may be declared abstract, and left
unimplemented

public abstract myMethod() ;
• If a class contains an abstract method, it must be declared as an

abstract class with the abstract keyword
public abstract class MyClass {...}

• Compare and contrast:
• Interface
• Abstract class
• Concrete class

1/29/2003 (c) University of Washington 05-4

Abstract vs Concrete

• Cannot instantiate an abstract class (no new)
• Like an interface

• A class that extends an abstract class can override methods
(including abstract methods) as usual

• A class that provides implementations for all abstract methods it
inherits is said to be concrete

• If a class inherits an abstract method and doesn’t override it, it is still abstract
• An error message is reported if a non-abstract class doesn't implement all

inherited abstract methods

05-2

1/29/2003 (c) University of Washington 05-5

Example: Animals as an Abstract Class
public abstract class Animal { // abstract class

private int numLegs;

public int getNumLegs() {
return this.numLegs;

}

public abstract String noise() ;
}

public class Cat extends Animal { // concrete subclass
public String noise() { return “purrr”; }

}

1/29/2003 (c) University of Washington 05-6

Comparing Abstract Classes and Interfaces
• Both of these specify a type
• Interface

• Pure method specification

• no method implementation (code), no instance variables, no
constructors

• Abstract class
• Method specification plus, optionally:

partial or full default method implementation
instance variables

constructors (called from subclasses using super)

• Which to use?

1/29/2003 (c) University of Washington 05-7

Abstract Classes vs. Interfaces

Pro Abstract Classes
• Can include instance variables
• Can include a default (partial or

complete) implementation, as a
starter for concrete subclasses

• Wider range of modifiers and other
details (static, etc.)

• Can specify constructors, which
subclasses can invoke with super

• Interfaces with many method
specifications are tedious to
implement

Pro Interfaces
• A class can extend at most one

superclass (abstract or not)

• By contrast, a class (and an
interface) can implement any
number of super-interfaces

• Helps keep state and behavior
separate

• Provides fewer constraints on
algorithms and data structures

1/29/2003 (c) University of Washington 05-8

Abstract Classes and Frameworks
• Abstract classes are a key component of good OO

programming
• A good place to factor out declarations and code that are common

to several classes, even if the common code is incomplete

• Support the development of good frameworks
• Can write a bunch of useful code in abstract classes
• Let clients write application-specific concrete subclasses with little

effort

• Design strategy:
• Build a bunch of examples in some domain (e.g. a bunch of games)
• Create abstract classes to capture repeating patterns

05-3

1/29/2003 (c) University of Washington 05-9

Framework Example
• Example: a framework for Dungeon games

abstract class MovingThing implements Actor { … }
// keeps track of location, perhaps a list of Shapes as appearance

abstract class Character extends MovingThing { … }
// keeps track of score, provides default implementations of motion,
// being captured, etc.
// clients implement their own concrete subclasses of Character,

// providing their own visual appearance and customizing behavior as desired
abstract class Monster extends MovingThing { … }

// adds chasing & capturing default behavior
// clients implement their own concrete subclasses of Monster,

// providing their own visual appearance and customizing behavior as desired

1/29/2003 (c) University of Washington 05-10

A Design Strategy
• These rules of thumb seem to provide a nice balance for

designing software that can evolve over time
(Might be overkill for some CSE 143 projects)

• Any major type should be defined in an interface
• If it makes sense, provide a default implementation of the interface

Can be abstract or concrete

• Client code can choose to either extend the default implementation,
overriding methods that need to be changed, or implement the
complete interface directly (e.g. if they already have another
superclass)

• We’ll see this pattern frequently when we look at the
UWCSE and Java libraries

1/29/2003 (c) University of Washington 05-11

Question for Next Time: If I Had Designed Java...

• The word abstract is vague and misleading at best
• If you designed the successor for Java...

• What word would you use to mark an abstract method?

• What word would you use to mark an abstract class?

