
03-1

1/29/2003 (c) University of Washington 03-1

CSE 143 Java

Inheritance

Reading: Ch. 9, 14

1/29/2003 (c) University of Washington 03-2

Composition: "has a"
• Classes and objects can be related in several ways
• One way: composition, aggregation, or reference
• Dog has-a owner, dog has legs, dog has collar, etc.
• In java: one object refers to another object

• via an instance variable

public class Dog {
private String name; / // this dog's name
private int age; //this dog's age
private Person owner; // this dog's owner
private Dog mother, father; // this dog’s parents
private Color coatColor; //etc, etc.

}

• One can think of the dog as "composed" of various objects:
"composition"

1/29/2003 (c) University of Washington 03-3

Picturing the Relationships

• Dog Fido; //might be 6 years old, brown, owned by Marge,
etc.

• Dog Apollo; //might be 2 years old, missing a leg, etc.
• In Java, it is a mistake to think of the parts of an object as

being "inside" the whole.

name
legs

ownercolor

Fido

1/29/2003 (c) University of Washington 03-4

Drawing Names and Objects

• Names and objects
• Very different things!

• In general, names are applied to objects
• Objects can refer to other objects using instance variable names

Fido (a name) an object of
type Dog

refers to age (instance
var. name)

mother (instance
var. name)

6

another object
of type Dog

03-2

1/29/2003 (c) University of Washington 03-5

Drawing Names and Objects

• A name might not refer to any object
• One object might have more than one name

• i.e., might be more than one reference to it

• An object might not have any name
• “anonymous”

Fido an object of
type Dog

refers to age

mother

6
another object
of type Dog

MyDoggie

Fifi

anonymous
object of type

Dog

1/29/2003 (c) University of Washington 03-6

Specialization – "is a"
• Specialization relations can form classification hierarchies

• cats and dogs are special kinds of mammals;
mammals and birds are special kinds of animals;
animals and plants are special kinds of living things

• lines and triangles are special kinds of polygons;
rectangles, ovals, and polygons are special kinds of shapes

• Keep in mind: Specialization is not the same as composition
• A cat "is-an" animal vs. a cat "has-a" tail

1/29/2003 (c) University of Washington 03-7

"is-a" in Programming
• Classes &/or interfaces can be related via specialization

• one class/interface is a special kind of another class/interface

• Rectangle class is a kind of Shape

• So far, we have seen one Java technique to capture this
idea: interfaces

• Java interfaces are one special case of a more general
design approach: Inheritance

1/29/2003 (c) University of Washington 03-8

Inheritance
• Java provides direct support for “is-a” relations

• likewise C++, C#, and other object-oriented languages

• Class inheritance
• one class can inherit from another class,

meaning that it's is a special kind of the other

• Terminology
• Original class is called the base class or superclass
• Specializing class is called the derived class or subclass

03-3

1/29/2003 (c) University of Washington 03-9

Inheritance: The Main Programming Facts
• Subclass inherits all instance variables and methods of the

inherited class
• All instance variables and methods of the superclass are

automatically part of the subclass

• Constructors are a special case (later)

• Subclass can add additional methods and instance variables

• Subclass can provide different versions of inherited
methods

1/29/2003 (c) University of Washington 03-10

A

B

A's stuff

B's stuff

A's stuff

B's stuff

B extends A

A's stuff is
automatically

part of B

1/29/2003 (c) University of Washington 03-11

Interfaces vs. Class Inheritance

• An interface is a simple form of inheritance
• If B implements interface A, then B inherits the stuff in A

(which is nothing but the method signatures of B)
• If B extends class A, then B inherits the stuff in A (which can

include method code and instance variables)
• To distinguish the two, people sometimes say “interface

inheritance” vs. “class inheritance”.
• What if you heard the phrase “code inheritance”?

1/29/2003 (c) University of Washington 03-12

Example: Representing Animals
• Generic Animal

public class Animal {
private int numLegs;

/** Return the number of legs */
public int getNumLegs() {

return this.numLegs;
}

/** Return the noise this animal makes */
public String noise() {

return "?";
}

}

03-4

1/29/2003 (c) University of Washington 03-13

Specific Animals
• Cats

public class Cat extends Animal {

// inherit numLegs and getNumLegs()

// additional inst. vars and methods

….

/** Return the noise a cat makes */

public String noise() {

return “meow";
}

}

• Dogs
public class Dog extends Animal {

// inherit numLegs and getNumLegs()

// additional inst. vars and methods

….

/** Return the noise a dog makes */

public String noise() {

return “WOOF!!";
}

}

1/29/2003 (c) University of Washington 03-14

Animal Animal's stuff

Cat
Animal's

stuff

Cat's stuff

Dog
Animals's

stuff

Dog's stuff

Cat extends Animal / Dog extends Animal

1/29/2003 (c) University of Washington 03-15

More Java
If class D extends B /inherits from B...
• Class D inherits all methods and fields from class B
• But... "all" is too strong

• constructors are not inherited

• same is true of static methods and static fields
although these static members are still available in the subclass

• Class D may contain additional (new) methods and fields
• But has no way to delete any

1/29/2003 (c) University of Washington 03-16

Never to be Forgotten
If class D extends/inherits from B...

• a D can do anything that a B can do (because of inheritance)
• a D can be used in any context where a B is appropriate

Every object of type D is also
an object of type B

03-5

1/29/2003 (c) University of Washington 03-17

Method Overriding
• If class D extends B, class D may provide an alternative,

replacement implementation of any method it would
otherwise inherit from B

• The definition in D is said to override the definition in B

• An overriding method cannot change the number of
arguments or their types, or the type of the result [why?]
• can only provide a different body

• Can you override an instance variable?
• Not exactly... ask me in person if you're really curious

1/29/2003 (c) University of Washington 03-18

Polymorphism
• Polymorphic: "having many forms"
• A variable that can refer to objects of different types is said

to be polymorphic
• Methods with polymorphic arguments are also said to be

polymorphic
public void speak(Animal a) {

System.out.println(a.noise());
}

• Polymorphic methods can be reused for many types

1/29/2003 (c) University of Washington 03-19

Static and Dynamic Types
• With polymorphism, we can distinguish between

• Static type: the declared type of the variable (fixed during execution)
• Dynamic type: the run-time class of the object the variable currently refers to (can

change as program executes)

public String noise() { // this has static type Animal
...

}

Cat foofoo = new Cat();
foofoo.noise (foofoo); //inside noise(), this has dynamic type Cat

Dog fido = new Dog();
foofoo.noise (fido); // inside noise(), this has dynamic type Dog

1/29/2003 (c) University of Washington 03-20

Dynamic Dispatch

• "Dispatch" refers to the act of actually placing a method in
execution at run-time

• When types are static, the compiler knows exactly what
method must execute.

• When types are dynamic... the compiler knows the name of
the method – but there could be ambiguity about which
version of the method will actually be needed at run-time.
• In this case, the decision is deferred until run-time, and we refer to it

as dynamic dispatch

03-6

1/29/2003 (c) University of Washington 03-21

Method Lookup: How Dynamic Dispatch Works

• When a message is sent to an object, the right method to invoke is the
one in the most specific class that the object is an instance of

• Makes sure that method overriding always has an effect

• Method lookup (a.k.a. dynamic dispatch) algorithm:
• Start with the run-time class of the receiver object (not the static type!)
• Search that class for a matching method
• If one is found, invoke it

• Otherwise, go to the superclass, and continue searching

• Example:
Animal a = new Cat();

System.out.println(a.noise());

a = new Dog();
System.out.println(a.getNumLegs());

1/29/2003 (c) University of Washington 03-22

Summary
• Object-oriented programming is hugely important

• Lots of new concepts and terms

• Lots of new programming and modeling power

• Used more and more widely

• Ideas (so far!)
• Composition ("has a") vs. specialization ("is a")

• Inheritance
• Method overriding

• Polymorphism, static vs. dynamic types

• Method lookup, dynamic dispatch

