
02-1

1/29/2003 (c) University of Washington 02-1

CSE 143 Java

Object and Class Relationships:
Interfaces

Reading: Ch. 15.1.3 (on Java interfaces)

1/29/2003 (c) University of Washington 02-2

Relationships Between Real Things
• Man walks dog
• Dog strains at leash
• Dog wears collar

• Man wears hat
• Girl feeds dog
• Girl watches dog

• Dog eats food
• Man holds briefcase
• Dog bites man

1/29/2003 (c) University of Washington 02-3

Common Relationship Patterns
• A few types of relationships occur extremely often

• IS-A: Jill is a student (and an employee and a sister and a skier and
....

• HAS-A: An airplane has seats (and lights and wings and engines
and...

• These are so important and common that programming
languages have special features to model them
• Some of these you know (maybe without knowing you know)

• Some of them we’ll learn about in this course, starting now, with
inheritance.

1/29/2003 (c) University of Washington 02-4

Student

Jill

is-a

Airplane

has-a

wings seats

02-2

1/29/2003 (c) University of Washington 02-5

State vs Behavior

• State
• has blue hair
• wearing glasses

• wearing blue shoes
• is hopping mad

• Behavior
• clenches fist
• raises arm

• hops up and down
• screams

1/29/2003 (c) University of Washington 02-6

Inheritance and Interfaces
• Inheritance is the way that many OO languages model the

IS-A relationship
• Interfaces (in Java) is one special form of inheritance

• Inheritance is one of the last missing pieces in our
knowledge of Java fundamentals

• A Java Interface declares a set of method signatures
• I.e., says what behavior exists

• Does not say how the behavior is implemented
i.e., does not give code for the methods

• Does not describe any state

1/29/2003 (c) University of Washington 02-7

interface I
method signatures of I,

without code; no instance
variables

B's stuff

concrete class C

methods of I,
including code

other methods,
instance

variables of C

1/29/2003 (c) University of Washington 02-8

A Domain to Model: Geometric Shapes
• Say we want to write programs that manipulate geometric

shapes and produce graphical output

• This application domain (the world to model) has:
• Shapes:

Rectangles, Squares
Ovals, Circles, Arcs
Polygons, Lines, Triangles
Images

Text

• Windows

• Let's build a computer model!

02-3

1/29/2003 (c) University of Washington 02-9

Typical Low-Level Design Process (1)
• Step 1: think up a class for each kind of "thing" to model

GWindow
Rectangle (no Square)
Oval (no Circle), Arc
Polygon, Line, Triangle
ImageShape
TextShape

• Step 2: identify the state/properties of each thing
• Each shape has an x/y position & width & height
• Most shapes have a color
• Most shapes have a filled/unfilled flag
• Each kind of shape has its own particular properties

1/29/2003 (c) University of Washington 02-10

Process (2)
• Step 3: identify the actions (behaviors) that each kind of

thing can do
• Each shape can add itself to a window:

s.addTo(w)

• Each shape can remove itself from its window:
s.removeFromWindow()

• Each shape can move
s.moveTo(x, y)
s.moveBy(deltaX, deltaY)

• Most shapes can have its color changed, or its size changed, or …
s.setColor(c)
s.resize(newWidth, newHeight)
…

1/29/2003 (c) University of Washington 02-11

Key Observation
Many kinds of shapes share common properties and actions
• How can we take advantage of this?
• It would be nice not to have to define things over and over.

• Yet there are differences between the shapes, too.

1/29/2003 (c) University of Washington 02-12

A Solution: Interfaces
• Declare common behaviors in a Java interface

public interface Shape {
public int getX();
public void addTo(GWindow w);
…

}

• Create a concrete class for each type of thing that
implements this interface

• Annotate the class definition with "implements shape"
public class Rectangle implements Shape {

public int getX() { … }
…

}

02-4

1/29/2003 (c) University of Washington 02-13

Shape
interface

int getX();
void
addTo(GWindow w);
...`

int getX() {
//code for getX
}
void addTo(GWindow w) {
//code for addTo
}
...

Rectangle
concrete class

other methods, instance
variables of Rectangle

Interface vs. Concrete Class

arrow pointing from
concrete class to interface

1/29/2003 (c) University of Washington 02-14

Implementing Interfaces

• If a class declaration says "implements I..."
• It MUST implement every single method of the interface

• It cannot change anything about the method interfaces

• A class can implement more than one interface
• When might this be useful? (Hint: think "modeling")

• A class that implements an interface is completely free to
add other methods, instance variables, etc.

1/29/2003 (c) University of Washington 02-15

Two Benefits of Interfaces
• The benefits are real, but may be hard to see until you’ve used the

concept in several programs

1. Better model of application domain
Humans talk about “shape”s as a general group; the computer model should, too

2. Can write code that works on any concrete object that implements the
interface (e.g., on any Shape)

Each interface introduces a new type
Can declare variables, arguments, results, etc. of that type

1/29/2003 (c) University of Washington 02-16

Using Interfaces as Types
• Each interface introduces a new type
• An object of a concrete class has two types, effectively

• The concrete type
• The interface type

• Such an object can be used in any situation where one or the
other type is appropriate

• As variables
• As arguments and parameters
• As return types

02-5

1/29/2003 (c) University of Washington 02-17

Some Domains for Examples
• Another set of domains to model: animations & simulations
• Example domains, and the things in those domains:

• Financial simulation: bank accounts, customers, investors

• Planetary simulation: suns, planets, moons, spaceships, asteroids
• Fantasy game: characters, monsters, weapons, walls

• Can have a visual representation of the simulation,
using graphical shapes & windows

• Let's build some computer models!

1/29/2003 (c) University of Washington 02-18

An Example: A Planetary Simulation
• Model the motion of celestial bodies

• Requirements: left a bit vague for this example
• Step 1: make classes for each kind of thing
• Step 2: identify the state/properties of each thing
• Step 3: identify the actions that each kind of thing can do
• Step 4: if there are classes with many common behaviors,

considering making an interface out of the common part

1/29/2003 (c) University of Washington 02-19

An Example: A Planetary Simulation
• Step 1: make classes for each kind of thing

• Sun, Planet, Spaceship
• Universe containing it all

• Step 2: identify the state/properties of each thing
• Location, speed, mass
• List of things in the universe

• Step 3: identify the actions that each kind of thing can do
• Compute force exerted by other things;

update position & velocity based on forces;
display itself on a window

• Tell each thing in universe to update itself based on all other things;
react to keyboard & mouse inputs

1/29/2003 (c) University of Washington 02-20

An Example: A Fantasy Game
• Step 1: make classes for each kind of thing

• Character, Spider, Blob
• Dungeon containing it all

• Step 2: identify the state/properties of each thing
• Location, speed
• Character and list of monsters in the dungeon

• Step 3: identify the actions (behaviors) of each
• Move based on external control;

chase the character;
display itself on a window

• Tell the character to move a bit, and each monster to chase a bit;
react to keyboard & mouse inputs

02-6

1/29/2003 (c) University of Washington 02-21

A Pattern for Simulations
• Each simulation has some active agents: Actors

• Actors can draw themselves on windows

• Actors can do some sort of incremental action

• Each simulation has a controller: Stage
• Maintains a list of active agents

• Drives the animation by iteratively telling each Actor to do their
action

1/29/2003 (c) University of Washington 02-22

Frameworks
• When a recurring pattern of classes is identified, it can be

extracted into a framework
• Often use interfaces in place of particular classes (e.g. Actor)

• Clients then build their models by extending the framework
• Making instances of framework classes (e.g. Stage)

• Making application-specific classes that implement framework
interfaces (e.g. Actor)

• Making new application-specific classes

• Libraries are simple kinds of frameworks
• Don't have interfaces for clients to implement

