
CSE143 Sp03 22-1

5/31/2003 (c) 2001-3, University of Washington 22-1

CSE 143 Java

Sorting

Reading: Ch. 13 & Sec. 17.3

5/31/2003 (c) 2001-3, University of Washington 22-2

Sorting

• Binary search is a huge speedup over sequential search
• But requires the list be sorted

• Slight Problem: How do we get a sorted list?
• Maintain the list in sorted order as each word is added
• Sort the entire list when needed

• Many, many algorithms for sorting have been invented
and analyzed

• Our algorithms all assume the data is already in an array
• Other starting points and assumptions are possible

5/31/2003 (c) 2001-3, University of Washington 22-3

Insert for a Sorted List
• Exercise: Assume that words[0..size-1] is sorted. Place new

word in correct location so modified list remains sorted
• Assume that there is spare capacity for the new word

• Before coding:
• Draw pictures of an example situation, before and after
• Write down the postconditions for the operation

// given existing list words[0..size-1], insert word in correct place and increase size
void insertWord(String word) {

size++;

}

5/31/2003 (c) 2001-3, University of Washington 22-4

Picture

• Draw your picture here

5/31/2003 (c) 2001-3, University of Washington 22-5

Insertion Sort

• Once we have insertWord working...
• We can sort a list in place by repeating the insertion

operation
void insertionSort() {

int finalSize = size;

size = 1;

for (int k = 1; k < finalSize; k++) {

insertWord(words[k]);

}

}

5/31/2003 (c) 2001-3, University of Washington 22-6

Insertion Sort As A Card Game Operation

• A bit like sorting a hand full of cards dealt one by one:
• Pick up 1st card – it's sorted, the hand is sorted
• Pick up 2nd card; insert it after or before 1st – both sorted
• Pick up 3rd card; insert it after, between, or before 1st two
• …

• Each time:
• Determine where new card goes
• Make room for the newly inserted card and place it there

CSE143 Sp03 22-2

5/31/2003 (c) 2001-3, University of Washington 22-7

Insertion Sort As Invariant Progression

sorted unsorted

5/31/2003 (c) 2001-3, University of Washington 22-8

Insertion Sort

// instance variable
int[] list; // list[0..size-1] is the list to be sorted
int size;
// Sort list[0..size-1]
public void sort {

for (int j=1 ; j < size; j++) {
// pre: 1 <= j && j < size && list[0 ... j-1] is in sorted order
int temp = list[j];
for (int i = j -1 ; i >= 0 && list[i] > temp ; i--) {

list[i+1] = list[i] ;
}
list[i+1] = temp ;
// post: 1 <= j && j < size && list[0 ... j] in sorted order

}
}

sorted unsorted

sorted unsorted

5/31/2003 (c) 2001-3, University of Washington 22-9

Insertion Sort Trace

• Initial array contents
0 pear
1 orange

2 apple

3 rutabaga

4 aardvark

5 cherry

6 banana

7 kumquat

5/31/2003 (c) 2001-3, University of Washington 22-10

Insertion Sort Performance

• Cost of each insertWord operation:

• Number of times insertWord is executed:

• Total cost:

• Can we do better?

5/31/2003 (c) 2001-3, University of Washington 22-11

Analysis

• Why was binary search so much more effective than
sequential search?
• Answer: binary search divided the search space in half each

time; sequential search only reduced the search space by 1
item

• Why is insertion sort O(n2)?
• Each insert operation only gets 1 more item in place at cost

O(n)
• O(n) insert operations

• Can we do something similar for sorting?

5/31/2003 (c) 2001-3, University of Washington 22-12

Where are we on the chart?

N log2N 5N N log2N N2 2N

===

8 3 40 24 64 256

16 4 80 64 256 65536

32 5 160 160 1024 ~109

64 6 320 384 4096 ~1019

128 7 640 896 16384 ~1038

256 8 1280 2048 65536 ~1076

10000 13 50000 105 108 ~103010

CSE143 Sp03 22-3

5/31/2003 (c) 2001-3, University of Washington 22-13

Divide and Conquer Sorting

• Idea: emulate binary search in some ways
1. divide the sorting problem into two subproblems;
2. recursively sort each subproblem;
3. combine results

• Want division and combination at the end to be fast
• Want to be able to sort two halves independently
• This algorithm strategy is called divide and conquer

5/31/2003 (c) 2001-3, University of Washington 22-14

Quicksort

• Invented by C. A. R. Hoare (1962)
• Idea

• Pick an element of the list: the pivot
• Place all elements of the list smaller than the pivot in the half of

the list to its left; place larger elements to the right
• Recursively sort each of the halves

• Before looking at any code, see if you can draw pictures
based just on the first two steps of the description

5/31/2003 (c) 2001-3, University of Washington 22-15

Code for QuickSort
// Sort words[0..size-1]

void quickSort() {

qsort(0, size-1);

}

// Sort words[lo..hi]

void qsort(int lo, int hi) {

// quit if empty partition

if (lo > hi) { return; }

int pivotLocation = partition(lo, hi); // partition array and return pivot loc

qsort(lo, pivotLocation-1);

qsort(pivotLocation+1, hi);

}

5/31/2003 (c) 2001-3, University of Washington 22-16

Recursion Analysis

• Base case? Yes.
// quit if empty partition
if (lo > hi) { return; }

• Recursive cases? Yes
qsort(lo, pivotLocation-1);

qsort(pivotLocation+1, hi);

• Each recursive cases work on a smaller subproblem, so
algorithm will terminate

5/31/2003 (c) 2001-3, University of Washington 22-17

A Small Matter of Programming

• Partition algorithm
• Pick pivot
• Rearrange array so all smaller element are to the left, all larger

to the right, with pivot in the middle

• Partition is not recursive
• Fact of life: partition can be tricky to get right

• Pictures and invariants are your friends here

• How do we pick the pivot?
• For now, keep it simple – use the first item in the interval
• Better strategies exist

5/31/2003 (c) 2001-3, University of Washington 22-18

Partition design

• We need to partition words[lo..hi]
• Pick words[lo] as the pivot
• Picture:

CSE143 Sp03 22-4

5/31/2003 (c) 2001-3, University of Washington 22-19

• Use first element of array section as the pivot

• Invariant:

A Partition Implementation

A x <=x unprocessed >x

lo L R hi

pivot

5/31/2003 (c) 2001-3, University of Washington 22-20

Partition Algorithm: PseudoCode
The two-fingered method

// Partition words[lo..hi]; return location of pivot in range lo..hi

int partition(int lo, int hi)

5/31/2003 (c) 2001-3, University of Washington 22-21

Partition Test

• Check: partition(0,7)
0 orange
1 pear

2 apple

3 rutabaga

4 aardvark

5 cherry

6 banana

7 kumquat

5/31/2003 (c) 2001-3, University of Washington 22-22

Complexity of QuickSort

• Each call to Quicksort (ignoring recursive calls):
• Each call of partition() is O(n) where n is size of the part of

array being sorted
Note: This n is smaller than the N of the original problem

• Some O(1) work
• Total = O(n) (n is the size of array part being sorted)

• Including recursive calls:
• Two recursive calls at each level of recursion, each partitions

“half” the array at a cost of O(n/2)
• How many levels of recursion?

5/31/2003 (c) 2001-3, University of Washington 22-23

QuickSort (Ideally)
N

N/2 N/2

N/4 N/4 N/4 N/4

1

0 0

1

0 0

1

0 0

1

0 0...

... ...

All boxes are executed (except
some of the 0 cases)

Total work at each level is O(N)

5/31/2003 (c) 2001-3, University of Washington 22-24

QuickSort Performance (Ideal Case)

• Each partition divides the list parts in half
• Sublist sizes on recursive calls: n, n/2, n/4, n/8….
• Total depth of recursion: __________________
• Total work at each level: O(n)
• Total cost of quicksort: ________________ !

• For a list of 10,000 items
• Insertion sort: O(n2): 100,000,000
• Quicksort: O(n log n): 10,000 log2 10,000 = 132,877

CSE143 Sp03 22-5

5/31/2003 (c) 2001-3, University of Washington 22-25

Worst Case for QuickSort

• If we’re very unlucky, then each pass through partition
removes only a single element.

• In this case, we have N levels of recursion rather than
log2N. What’s the total complexity?

1 2 3 4

1 2 3 4

2 3 4

3 4

1 2 3 4

5/31/2003 (c) 2001-3, University of Washington 22-26

QuickSort Performance (Worst Case)

• Each partition manages to pick the largest or smallest
item in the list as a pivot
• Sublist sizes on recursive calls:
• Total depth of recursion: __________________
• Total work at each level: O(n)
• Total cost of quicksort: ________________ !

5/31/2003 (c) 2001-3, University of Washington 22-27

Worst Case vs Average Case

• QuickSort has been shown to work well in the average
case (mathematically speaking)

• In practice, Quicksort works well, provided the pivot is
picked with some care

• Some strategies for choosing the pivot:
• Compare a small number of list items (3-5) and pick the median

for the pivot
• Pick a pivot element randomly (!) in the range lo..hi

5/31/2003 (c) 2001-3, University of Washington 22-28

QuickSort as an Instance of Divide and Conquer

Surprise! Nothing to do3. Combine
subsolutions to get
overall solution

Recursively sort each of the halves2. Solve subproblems
separately (and
recursively)

Pick an element of the list: the pivot
Place all elements of the list smaller than the
pivot in the half of the list to its left; place
larger elements to the right

1. Divide

QuickSortGeneric Divide and
Conquer

5/31/2003 (c) 2001-3, University of Washington 22-29

Another Divide-and-Conquer Sort: Mergesort

• 1. Split array in half
• just take the first half and the second half of the array, without rearranging

• 2. Sort the halves separately
• 3. Combining the sorted halves (“merge”)

• repeatedly pick the least element from each array
• compare, and put the smaller in the resulting array
• example: if the two arrays are

1 12 15 20
5 6 13 21 30

The "merged" array is
1 5 6 12 13 15 20 21 30

• note: we will need a second array to hold the result

5/31/2003 (c) 2001-3, University of Washington 22-30

Quicksort vs MergeSort

• Mergesort always has subproblems of size n/2
• Which means guaranteed O(n log n)

• But mergesort requires an extra array for the result
• No problem if you’re sorting disk or tape files
• Can be a problem if you’re trying to sort large lists in main

memory

• In practice, quicksort is the most commonly used
general-purpose sort
• Pretty easy to pick pivots well, so expected time is O(n log n)
• Doesn’t require extra space for a copy of the data

CSE143 Sp03 22-6

5/31/2003 (c) 2001-3, University of Washington 22-31

Summary
• Recursion

• Methods that call themselves
• Need base case(s) and recursive case(s)
• Recursive cases need to progress toward a base case
• Often a very clean way to formulate a problem (let the function

call mechanism handle bookkeeping behind the scenes)

• Divide and Conquer
• Algorithm design strategy that exploits recursion
• Divide original problem into subproblems
• Solve each subproblem recursively
• Can sometimes yield dramatic performance improvements

