CSE 143 Java Sorting Reading: Ch. 13 & Sec. 17.3 5/31/2003 (c) 2001-3, University of Washington 22-1

Sorting

- · Binary search is a huge speedup over sequential search
 - · But requires the list be sorted
- · Slight Problem: How do we get a sorted list?
- · Maintain the list in sorted order as each word is added
- · Sort the entire list when needed
- Many, many algorithms for sorting have been invented and analyzed
- · Our algorithms all assume the data is already in an array
- · Other starting points and assumptions are possible

5/31/2003 (c) 2001-3, University of Washington 22-2

Insert for a Sorted List • Exercise: Assume that words[0...size-1] is sorted. Place new word in correct location so modified list remains sorted • Assume that there is spare capacity for the new word • Before coding: • Draw pictures of an example situation, before and after • Write down the postconditions for the operation // given existing list words[0..size-1], insert word in correct place and increase size void insertWord(String word) {

Picture • Draw your picture here (c) 2001-3, University of Washington 22-4

Insertion Sort

(c) 2001-3, University of Washington

- · Once we have insertWord working...
- We can sort a list in place by repeating the insertion operation

```
void insertionSort() {
  int finalSize = size;
  size = 1;
  for (int k = 1; k < finalSize; k++) {
    insertWord(words[k]);
  }
}</pre>
```

5/31/2003

5/31/2003

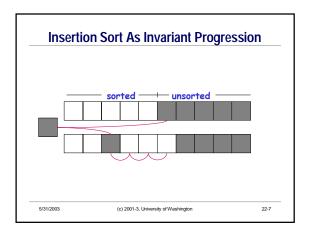
(c) 2001-3, University of Washington 22

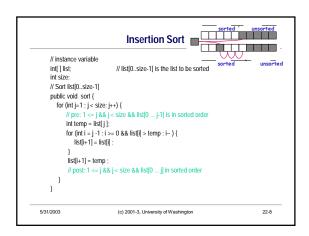
22-3

Insertion Sort As A Card Game Operation

- · A bit like sorting a hand full of cards dealt one by one:
 - Pick up 1st card it's sorted, the hand is sorted
 - Pick up 2nd card; insert it after or before 1st both sorted
- Pick up 3^{rd} card; insert it after, between, or before 1^{st} two
- Each time:
- · Determine where new card goes
- · Make room for the newly inserted card and place it there

31/2003 (c) 2001-3, University of Washington





Insertion Sort Trace Initial array contents O pear 1 orange 2 apple 3 rulabaga 4 aardvark 5 cherry 6 banana 7 kumquat 5/31/2003 (c) 2001-3, University of Washington 22-9

Insertion Sort Performance Cost of each insertWord operation: Number of times insertWord is executed: Total cost: Can we do better?

Analysis • Why was binary search so much more effective than sequential search? • Answer: binary search divided the search space in half each time; sequential search only reduced the search space by 1 item • Why is insertion sort O(n²)? • Each insert operation only gets 1 more item in place at cost O(n) • O(n) insert operations • Can we do something similar for sorting?

Where are we on the chart?					
N	log ₂ N	5N	N log ₂ N	N ²	2 ^N
8	3	40	24	64	256
16	4	80	64	256	65536
32	5	160	160	1024	~109
64	6	320	384	4096	~1019
128	7	640	896	16384	~1038
256	8	1280	2048	65536	~1076
10000	13	50000	105	108	~103010

Divide and Conquer Sorting

- · Idea: emulate binary search in some ways
- 1. divide the sorting problem into two subproblems;
- 2. recursively sort each subproblem;
- 3. combine results
- · Want division and combination at the end to be fast
- · Want to be able to sort two halves independently
- · This algorithm strategy is called divide and conquer

5/31/200

(c) 2001-3, University of Washington

22-13

Quicksort

- · Invented by C. A. R. Hoare (1962)
- Idea
- · Pick an element of the list: the pivot
- Place all elements of the list smaller than the pivot in the half of the list to its left; place larger elements to the right
- · Recursively sort each of the halves
- Before looking at any code, see if you can draw pictures based just on the first two steps of the description

5/31/2003

(c) 2001-3, University of Washington

22-14

Code for QuickSort

```
// Sort words[0..size-1]
void quickSort() {
    qsort(0, size-1);
}

// Sort words[0..hi]
void qsort(int lo, int hi) {
    // quit if empty partition
    if (lo > hi) { return;}
    int pivott.ocation = partition(lo, hi);
    // qsort(pivott.ocation+1, hi);
}

5/31/2003 (c) 2001-3, University of Washington 22-15
```

Recursion Analysis

· Base case? Yes.

// quit if empty partition if (lo > hi) { return; }

· Recursive cases? Yes

qsort(lo, pivotLocation-1); qsort(pivotLocation+1, hi);

• Each recursive cases work on a smaller subproblem, so algorithm will terminate

5/31/2003

(c) 2001-3, University of Washington

22-16

A Small Matter of Programming

- Partition algorithm
 - Pick pivo
- Rearrange array so all smaller element are to the left, all larger to the right, with pivot in the middle
- · Partition is not recursive
- · Fact of life: partition can be tricky to get right
 - · Pictures and invariants are your friends here
- · How do we pick the pivot?
- For now, keep it simple use the first item in the interval
- · Better strategies exist

5/31/2003

(c) 2001-3, University of Washington

22-17

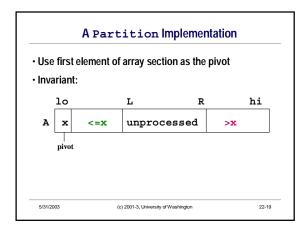
Partition design

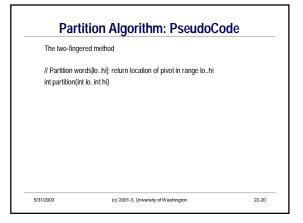
- · We need to partition words[lo..hi]
- Pick words[lo] as the pivot
- · Picture:

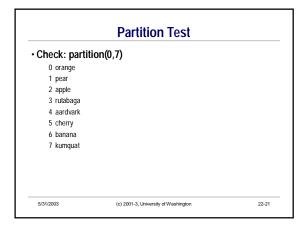
5/31/200

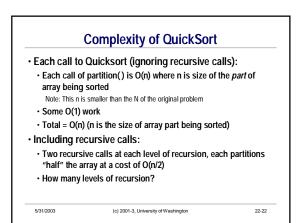
(c) 2001-3, University of Washington

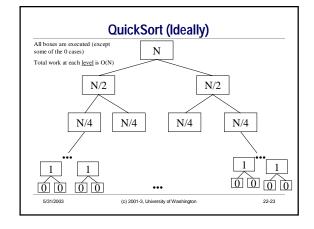
22-18











QuickSort Performance (Ideal Case) Each partition divides the list parts in half Sublist sizes on recursive calls: n, n/2, n/4, n/8.... Total depth of recursion: Total work at each level: O(n) Total cost of quicksort: For a list of 10,000 items Insertion sort: O(n²): 100,000,000 Quicksort: O(n log n): 10,000 log₂ 10,000 = 132,877 S31/2003 (c) 2001-3, University of Washington 22-24

Worst Case for QuickSort

• If we're very unlucky, then each pass through partition removes only a *single* element.

• In this case, we have N levels of recursion rather than log₂N. What's the total complexity?

5/31/2003

(c) 2001-3, University of Washington

22-25

QuickSort Performance (Worst Case)

- Each partition manages to pick the largest or smallest item in the list as a pivot
 - · Sublist sizes on recursive calls:
 - Total depth of recursion: _______
 - · Total work at each level: O(n)
 - Total cost of quicksort: ______

5/31/2003

(c) 2001-3, University of Washington

Worst Case vs Average Case

- QuickSort has been shown to work well in the average case (mathematically speaking)
- In practice, Quicksort works well, provided the pivot is picked with some care
- Some strategies for choosing the pivot:
- Compare a small number of list items (3-5) and pick the *median* for the pivot
- · Pick a pivot element randomly (!) in the range lo..hi

5/31/2003

(c) 2001-3, University of Washington

22-27

QuickSort as an Instance of Divide and Conquer

Generic Divide and Conquer	QuickSort
1. Divide	Pick an element of the list: the <i>pivot</i> Place all elements of the list smaller than the pivot in the half of the list to its left; place larger elements to the right
2. Solve subproblems separately (and recursively)	Recursively sort each of the halves
3. Combine subsolutions to get overall solution	Surprise! Nothing to do
5/31/2003	(c) 2001-3, University of Washington 22-28

Another Divide-and-Conquer Sort: Mergesort

- 1. Split array in half
- just take the first half and the second half of the array, without rearranging
- · 2. Sort the halves separately
- · 3. Combining the sorted halves ("merge")
 - · repeatedly pick the least element from each array
 - · compare, and put the smaller in the resulting array
 - example: if the two arrays are
 - 1 12 15 20 5 6 13 21 3
 The "merged" array is
 - 1 5 6 12 13 15 20 21 30
 - · note: we will need a second array to hold the result

5/31/2003

(c) 2001-3, University of Washington

22-29

Quicksort vs MergeSort

- · Mergesort always has subproblems of size n/2
 - · Which means guaranteed O(n log n)
- · But mergesort requires an extra array for the result
- · No problem if you're sorting disk or tape files
- Can be a problem if you're trying to sort large lists in main memory
- In practice, quicksort is the most commonly used general-purpose sort
 - \bullet Pretty easy to pick pivots well, so expected time is O(n log n)
- Doesn't require extra space for a copy of the data

5/31/2003

(c) 2001-3, University of Washington

22-30

Summary

- Recursion
 - · Methods that call themselves
- $\boldsymbol{\cdot}$ Need base case(s) and recursive case(s)
- Recursive cases need to progress toward a base case
 Often a very clean way to formulate a problem (let the function call mechanism handle bookkeeping behind the scenes)
- Divide and Conquer
 - · Algorithm design strategy that exploits recursion
 - Divide original problem into subproblems
 - · Solve each subproblem recursively
 - Can sometimes yield dramatic performance improvements

(c) 2001-3, University of Washington