
CSE143 Sp03 20-1

5/27/2003 (c) 2001-3, University of Washington 20-1

CSE 143 Java

Trees

5/27/2003 (c) 2001-3, University of Washington 20-2

Overview

• Topics
• Trees: Definitions and terminology
• Binary trees
• Tree traversals

5/27/2003 (c) 2001-3, University of Washington 20-3

Trees

• Most of the structures we’ve looked at so far are linear
• Arrays
• Linked lists

• There are many examples of structures that are not
linear, e.g. hierarchical structures
• Organization charts
• Book contents (chapters, sections, paragraphs)
• Class inheritance diagrams

• Trees can be used to represent hierarchical structures

5/27/2003 (c) 2001-3, University of Washington 20-4

Looking Ahead To An Old Goal
• Finding algorithms and data structures for fast searching

• A key goal
• Sorted arrays are faster than unsorted arrays, for searching

Can use binary search algorithm

Not so easy to keep the array in order

• LinkedLists were faster than arrays (or ArrayLists), for insertion and
removal operations

The extra flexibility of the "next" pointers avoided the cost of sliding

But... LinkedLists are hard to search, even if sorted

• Is there an analogue of LinkedLists for sorted collections??
• The answer will be...Yes: a particular type of tree!

5/27/2003 (c) 2001-3, University of Washington 20-5

Tree Definitions

• A tree is a collection of nodes connected by edges
• A node contains

• Data (e.g. an Object)
• References (edges) to two or more subtrees or children

• Trees are hierarchical
• A node is said to be the parent of its children (subtrees)
• There is a single unique root node that has no parent
• Nodes with no children are called leaf nodes
• A tree with no nodes is said to be empty

5/27/2003 (c) 2001-3, University of Washington 20-6

Drawing Trees

• For whatever reason, computer sciences trees are
normally drawn upside down: root at the top

CSE143 Sp03 20-2

5/27/2003 (c) 2001-3, University of Washington 20-7

Tree Terminology

c g

a

b j

k

fe h id l

m

leaves

nodes

root

edges

5/27/2003 (c) 2001-3, University of Washington 20-8

Subtrees

• A subtree in a tree is any node in the tree together with
all of its descendants (its children, and their children,
recursively)

• Note: note every subset is a subtree!

a

b

c g

j

k m

5/27/2003 (c) 2001-3, University of Washington 20-9

Level and Height

c g

a

b j

k

fe h id l

m

leaves (not all at same level)

level 2
level 3

level 1

Definition: The root has level 1
Children have level 1 greater than their parent

Definition: The height is the highest level of a tree.

5/27/2003 (c) 2001-3, University of Washington 20-10

Binary Trees

• A binary tree is a tree each of whose nodes has no more
than two children
• The two children are called the left child and right child
• The subtrees belonging to those children are called the left

subtree and the right subtree

a

b

j f

e d hg

i

e

k

Left child Right child

5/27/2003 (c) 2001-3, University of Washington 20-11

Binary Tree Nodes

• A node for a binary tree holds the item and references to
its subtrees

class BTNode {

public Object item; // data item in this node

public BTNode left; // left subtree, or null if none

public BTNode right; // right subtree, or null if none

public BTNode(Object item, BTNode left, BTNode right) { … }

}

• This class can be public (if other code needs access), or it can
be a private nested class inside the tree class

5/27/2003 (c) 2001-3, University of Washington 20-12

Binary Tree Implementation

• The whole tree can be represented just by a pointer to
the root node, or null if the tree is empty

public class BinTree {
private BTNode root; // root of tree, or null if empty

public BinTree() { root = null; }

…

}

CSE143 Sp03 20-3

5/27/2003 (c) 2001-3, University of Washington 20-13

Tree Algorithms

• The definition of a tree is naturally recursive:
• A tree is either null (empty),

or data + left (sub-)tree + right (sub-)tree
• Base case(s)?
• Recursive case(s)?

• Given a recursively defined data structure, recursion is
often a very natural technique for algorithms on that
data structure
• Don’t fight it!

5/27/2003 (c) 2001-3, University of Washington 20-14

A Typical Tree Algorithm: size()
public class BinTree {

…
/** Return the number of items in this tree */
public int size() {

return subtreeSize(root);
}
// Return the number of nodes in the (sub-)tree with root n
private int subtreeSize(BTNode n) {

if (n == null) {
return 0;

} else {
return 1 + subtreeSize(n.left) + subtreeSize(n.right);

}
}

5/27/2003 (c) 2001-3, University of Washington 20-15

Tree Traversal

• Functions like subtreeSize systematically “visit” each
node in a tree
• This is called a traversal
• We also used this word in connection with lists

• Traversal is a common pattern in many algorithms
• The processing done during the “visit” varies with the

algorithm

• What order should nodes be visited in?
• Many are possible
• Three have been singled out as particularly useful for binary

trees: preorder, postorder, and inorder
5/27/2003 (c) 2001-3, University of Washington 20-16

Traversals
• Preorder traversal:

• “Visit” the (current) node first
i.e., do what ever processing is to be done

• Then, (recursively) do preorder traversal on its children, left to right

• Postorder traversal:
• First, (recursively) do postorder traversals of children, left to right
• Visit the node itself last

• Inorder traversal:
• (Recursively) do inorder traversal of left child
• Then visit the (current) node
• Then (recursively) do inorder traversal of right child

Footnote: pre- and postorder make sense for all trees; inorder only for binary trees

5/27/2003 (c) 2001-3, University of Washington 20-17

Example of Tree Traversal

Preorder:

Inorder:

Postorder:

In what order are the nodes
visited, if we start the
process at the root?

9

5

2 7

4 6 81

12

17

l1

13

5/27/2003 (c) 2001-3, University of Washington 20-18

More Practice

What about this tree?

6

3

1 4

2 5

8

7

l3

10

11

12

Inorder:

Preorder:

Postorder:

CSE143 Sp03 20-4

5/27/2003 (c) 2001-3, University of Washington 20-19

New Algorithm: contains
• Return whether or not a value is an item in the tree

public class BinTree {
…
/** Return whether elem is in tree */
public boolean contains(Object elem) {

return subtreeContains(root, elem);
}
// Return whether elem is in (sub-)tree with root r
private boolean subtreeContains(BTNode r, Object elem) {

if (r == null) {
return false;

} else if (r.item.equals(elem)) {
return true;

} else {
return subtreeContains(r.left, elem) || subtreeContains(r.right, elem);

}
}

5/27/2003 (c) 2001-3, University of Washington 20-20

Test

contains(d)

contains(c)

a

b

j f

e d hg

i

e

k

5/27/2003 (c) 2001-3, University of Washington 20-21

Cost of contains

• Work done at each node:

• Number of nodes visited:

• Total cost:

• Can we do better?

