
CSE143 Sp03 18-1

8/5/2003 (c) 2001-3, University of Washington 18-1

CSE 143 Java

Searching and Recursion

Reading: Ch. 13 & Secs. 17.1-17.3

8/5/2003 (c) 2001-3, University of Washington 18-2

Overview
• Topics

• Maintaining an ordered list
• Sequential and binary search
• Recursion
• Divide and conquer strategy

8/5/2003 (c) 2001-3, University of Washington 18-3

Problem: A Word Dictionary
• Suppose we want to maintain a real dictionary. Data is a

list of <word, definition> pairs -- a "Map" structure
<“aardvark”, “an animal that starts with an A and ends with a K”>

<“apple”, “a leading product of Washington state”>
<“banana”, “a fruit imported from somewhere else”>

etc.

• We want to be able to do the following operations
efficiently
• Look up a definition given a word (key)

• Retrieve sequences of definitions in alphabetical order

8/5/2003 (c) 2001-3, University of Washington 18-4

Representation
• Need to pick a data structure
• Analyze possibilities based on cost of operations

search access next in order
• unordered list

Array?

Linked List?

• ?

CSE143 Sp03 18-2

8/5/2003 (c) 2001-3, University of Washington 18-5

Sequential (Linear) Search
• If we don’t know anything about the list, we can use a linear

search to locate a word
// return location of word in words, or –1 if found

int find(String word) {

int k = 0;

while (k < size && !word.equals(words[k]) {

k++

}

if (k < size) { return k; } else { return –1; } // lousy indenting to fit on slide
} // don’t do this at home

• Time for list of size n:
• Can we do better?

8/5/2003 (c) 2001-3, University of Washington 18-6

Can we do better?
• Yes if the list is in alphabetical order
• To simplify the explanations for the present: we’ll treat

the list as an array of strings
0 aardvark // instance variable of the Ordered List class
1 apple String[] words; // list is stored in words[0..size-1]

2 banana int size; // # of words

3 cherry
4 kumquat

5 orange
6 pear

7 rutabaga

8/5/2003 (c) 2001-3, University of Washington 18-7

Binary Search
• Key idea: to search a section of the array

• Examine middle element
• Search either left or right half depending on whether desired

word precedes or follows middle word alphabetically

• The list being sorted is a precondition of binary search.
• The algorithm is not guaranteed to give the correct answer if

the precondition is violated

8/5/2003 (c) 2001-3, University of Washington 18-8

Binary Search
// Return location of word in words, or –1 if not found
int find(String word) {

return bSearch(word, 0, size-1);
}
// Return location of word in words[lo..hi] or –1 if not found
int bSearch(String word, int lo, int hi) {

// return –1 if interval lo..hi is empty
if (lo > hi) { return –1; }
// search words[lo..hi]
int mid = (lo + hi) / 2;
int comp = word.compareTo(words[mid]);
if (comp == 0) { return mid; }
else if (comp < 0) { return _________________________ ; }
else /* comp > 0 */ { return _________________________ ; }

}

CSE143 Sp03 18-3

8/5/2003 (c) 2001-3, University of Washington 18-9

"The Word Must Be Where?" Three Cases
int comp = word.compareTo(words[mid]);

if (comp == 0) {
//the word must be where? _______________

return _________________ ;
}

else if (comp < 0) {
//the word must be where? _____________

return _________________________ ;
}

else { //comp > 0

//the word must be where? _____________
return _________________________ ;

}

8/5/2003 (c) 2001-3, University of Washington 18-10

"Where?" Answered
int comp = word.compareTo(words[mid]);

if (comp == 0) {
//the word must be where? at position "mid"
return _________________ ;

}

else if (comp < 0) {
//the word must be where? in the lower half of the array
return _________________________ ;

}

else { //comp > 0

//the word must be where? in the upper half of the array
return _________________________ ;

}

8/5/2003 (c) 2001-3, University of Washington 18-11

Return Values: Three Cases
int comp = word.compareTo(words[mid]);
if (comp == 0) {

//the word must be where? at position "mid"
return mid;

}
else if (comp < 0) {

//the word must be where? in the lower half of the array
return /*the result of searching the lower half of the array*/
_________________________ ;

}
else { //comp > 0

//the word must be where? in the upper half of the array
return /*the result of searching the upper half of the array*/
_________________________ ;

}

8/5/2003 (c) 2001-3, University of Washington 18-12

What is "The Lower Half"?
... else if (comp < 0) {

//the word must be where? in the lower half of the array
return /*the result of searching the lower half of the array*/

_________________________ ;
}

...

Remember the method header was:
// Return location of word in words[lo..hi] or –1 if not found
int bSearch(String word, int lo, int hi) {

So the lower half starts at _____ and ends at ______
return /*the result of searching the lower half of the array*/ becomes
return /*the result of searching the array from ___ to ___*/

CSE143 Sp03 18-4

8/5/2003 (c) 2001-3, University of Washington 18-13

Comments Complete, Code Incomplete
int comp = word.compareTo(words[mid]);
if (comp == 0) {

//the word must be where? at position "mid"
return mid;

}
else if (comp < 0) {

//the word must be where? in the lower half of the array
return /*the result of searching from lo to mid-1*/

_________________________ ;
}
else { //comp > 0

//the word must be where? in the upper half of the array
return /*the result of searching from mid+1 to hi*/

_________________________ ;
}

8/5/2003 (c) 2001-3, University of Washington 18-14

Last Piece of the Puzzle
...

return /*the result of searching from lo to mid-1*/
_________________________ ;

}

How can we get the "result of searching from lo to mid-1"?

We have a method called bSearch that can search an array within a range of indexes.

// Return location of word in words[x.y] or –1 if not found
int bSearch(String word, int x, int y)

Let x be lo, let y be mid-1

bSearch(String word, int lo, int mid-1)

8/5/2003 (c) 2001-3, University of Washington 18-15

Recursion
• A method (function) that calls itself is recursive
• Nothing really new here
• Method call review:

• Evaluate argument expressions
• Allocate space for parameters and local variables of function

being called
• Initialize parameters with argument values
• Then execute the function body

• What if the function being called is the same one that is
doing the calling?
• Answer: no difference at all!

8/5/2003 (c) 2001-3, University of Washington 18-16

Wrong Way to Think About It

...
bSearch(array, lo, mid-1)

...

bSearch

�Not like a reflection in a mirror
�More like a clone that you send off to do an errand and
bring you the results
�Definitely not like a snake swallowing itself�

CSE143 Sp03 18-5

8/5/2003 (c) 2001-3, University of Washington 18-17 8/5/2003 (c) 2001-3, University of Washington 18-18

Right Way to Think About It

...
bSearch(array, lo, mid-1)

...

bSearch

...
bSearch(array, lo, mid-1)

...

bSearch

�Send in the clones��

8/5/2003 (c) 2001-3, University of Washington 18-19

Trace
• Trace execution of find(“orange”)

0 aardvark

1 apple
2 banana

3 cherry
4 kumquat

5 orange

6 pear
7 rutabaga

8/5/2003 (c) 2001-3, University of Washington 18-20

Trace
• Trace execution of find(“kiwi”)

0 aardvark

1 apple
2 banana

3 cherry
4 kumquat

5 orange

6 pear
7 rutabaga

CSE143 Sp03 18-6

8/5/2003 (c) 2001-3, University of Washington 18-21

Performance of Binary Search
• Analysis

• Time (number of steps) per each recursive call:
• Number of recursive calls:
• Total time:

• A picture helps

8/5/2003 (c) 2001-3, University of Washington 18-22

Binary Search Sizes
N

N/2 N/2

N/4 N/4 N/4 N/4

1

0 0

1

0 0

1

0 0

1

0 0...

... ...

All paths from the size N case
to a size 0 case are the same
length: 1+log2N

Any given run of binary
search will follow only one
path from the root to a leaf

8/5/2003 (c) 2001-3, University of Washington 18-23

Linear Search vs. Binary Search
• Compare to linear search

• Time to search 10, 100, 1000, 1,000,000 words
linear

binary

• What is incremental cost if size of list is doubled?

• Why is Binary search faster?
• The data structure is the same
• The precondition on the data structure is different: stronger
• Recursion itself is not an explanation

One could code linear search using recursion, or binary search without

8/5/2003 (c) 2001-3, University of Washington 18-24

More About Recursion
A recursive function needs three things to work properly
1. One or more base cases that are not recursive

• if (lo > hi) { return –1; }

• if (comp == 0) { return mid; }

2. One or more recursive cases that handle a situation
by calling the method again
• else /* comp > 0 */ { return bsearch(word,mid+1,hi); }

3. The recursive cases must lead to “smaller” instances
of the problem
• "Smaller" means: closer to a base case
• Without "smaller", what might happen?

CSE143 Sp03 18-7

8/5/2003 (c) 2001-3, University of Washington 18-25

"Divide and Conquer"
• Takes a cue from military folklore
• Three-step strategy
1. Divide the problem into smaller subproblems
2. Solve the subproblems separately

• Using recursion, of course!

3. Combine the subproblem solutions into the overall
solution

8/5/2003 (c) 2001-3, University of Washington 18-26

Recursion vs. Iteration: The SmackDown
• Recursion can completely replace

iteration
• Some rewriting of the iterative

algorithm is necessary
• usually minor

• Some languages have recursion only
• Recursion is often more elegant but

has some extra overhead
• Recursion is a natural for certain

algorithms and data structures
(where branching is required)

• very effective in "divide and conquer"
situations

• Iteration can completely replace
recursion

• Some rewriting of the recursive
algorithm is necessary

• often major

• A few (mostly older languages) have
iteration only

• Iteration is not always elegant but is
usually efficient

• Iteration is natural for linear (non-
branching) algorithms and data
structures

8/5/2003 (c) 2001-3, University of Washington 18-27

Recursion and Elegance

• Problem: reverse a linked list
• Constraints: no last pointer, no numElems count,
no backward pointers, no additional data
structures

• Footnote: this is known as a Microsoft job
interview question (really!)

• Non-recursive solution: You try to find it

8/5/2003 (c) 2001-3, University of Washington 18-28

Result of Trying To Reverse a Linked List Iteratively

• Problem: reverse a linked list
• Constraints: no last pointer, no numElems count, no backward

pointers, no additional data structures
• Non-recursive solution:

• try it and weep

• Better hope this wasn't a question on your Microsoft job
interview!

CSE143 Sp03 18-8

8/5/2003 (c) 2001-3, University of Washington 18-29

Recursive Solution: Simple, Elegant
• Problem: reverse a linked list
• Constraints: no last pointer, no numElems count, no backward pointers, no

additional data structures

newList = reverse(oldList.first);
...
List reverse(Link firstLink) {

if (firstLink == null) { return new SimpleList(); }
return reverse(firstLink.next).add(firstLink.data));
}

• Better hope this is a question on your Microsoft job interview!
• PS: Did we cheat??

8/5/2003 (c) 2001-3, University of Washington 18-30

Summary
• Recursion

• Methods that call themselves
• Need base case(s) and recursive case(s)
• Recursive cases need to progress toward a base case
• Often a very clean way to formulate a problem (let the function

call mechanism handle bookkeeping behind the scenes)

• Divide and Conquer
• Algorithm design strategy that exploits recursion
• Divide original problem into subproblems
• Solve each subproblem recursively
• Can sometimes yield dramatic performance improvements

